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Does the use of technology make a difference in
the geometric cognitive growth of pre-service
mathematics teachers?

Gerrit Stols
University of Pretoria

This study investigated the geometric cognitive growth of pre-service mathematics
teachers in terms of the Van Hiele levels in a technology-enriched environment, as
opposed to that of students in a learning environment without any technological
enhancements. In order to investigate this, a quasi-experimental non-equivalent
comparison group design was used. Similar course content was used for both the
control and experimental groups. The students worked through a series of geometry
activities and problems. The difference between the groups was that dynamic
geometry software was integrated into the teaching of the experimental group. The
Cognitive Development and Achievement in Secondary School Geometry (CDASSG) Van
Hiele geometry test was used to determine all the students’ level of geometric thinking
before and after the course. The study found that the use of dynamic geometry
software enhanced student teachers’ geometric visualisation, analysis and deduction,
but not their ability to informally justify their reasoning and to understand the formal
aspects of deduction.

Background and literature study

Despite large amounts of money having been invested in equipping schools with
technology, there is limited evidence of positive effects on student achievement
(Wenglinsky, 1998; Zhao, Pugh, Sheldon & Byers, 2002). The assumption was that
increased availability of technology in the classroom would lead to increased use, and
increased use would then lead to not only efficient teaching and better learning, but
also better student achievement (Cuban, 2001). According to Brown-L'Bahy (2005),
researchers voiced uncertainty about the benefits of school technology use as early as
in 1987. In fact, Myhre, Popejoy and Carney (2006, p. 1002) pointed out that there is
“considerable uncertainty within the educational community regarding the value of
technology in teaching and learning”. From these different arguments it is clear that
researchers themselves struggle with the question of whether and how technology can
improve teaching and learning. There are however researchers who believe that
technology, if correctly used, can enhance teaching and learning. Ching, Basham and
Planfetti (2005, p.226) found from research that “student-centered, technology-
integrated learning environments help to produce students who are better able to
think critically, solve problems, collaborate with others, and engage deeply in the
learning process”. According to Sanders (1998), the appropriate use of dynamic
geometry software can enhance mathematics teaching and conceptual development,
and enrich visualisation, while also laying a foundation for deductive proof.
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Wong (1998) contended that the instructional objective with graphing software is to
develop and reinforce concepts, to rectify common errors, to check graphical solutions,
to solve equations graphically, to test conjectures through problem posing, to
encourage users to become metacognitive, to help users to acquire information
technology skills, and to enhance the desire to learn. A study by Usun (2007) suggested
that if technology is used for higher-order learning, it can result in increased
mathematical achievement. Wang (2008) also argued that technology-supported
collaborative learning has a positive effect on students’ performance in problem-based
tasks.

Guven (2012) explained that the contribution of technology to the teaching and
learning of geometry has been associated with the dynamic nature of software such as
Cabri, GeoGebra and Geometer’s Sketchpad. The power of the dynamic software does not
stem only from the possibility of making constructing, it also allows interactive
explorations by the dragging of points, vertices and objects:

Once a construction is completed, the user can drag certain elements of it, and the
whole construction behaves in such a way that specified constraints are maintained,
providing an environment in which students can experiment freely. They can easily
test their intuitions and conjectures in the process of looking for patterns ... (Guven,
2012)

The current research aims to investigate whether and how the use of dynamic
geometry software, such as Cabri 3D, GeoGebra and Geometer’s Sketchpad, influences
the cognitive growth of geometry students. The Van Hiele theory was used to measure
the cognitive growth of these students. Idris (2009) also used the Van Hiele theory in a
study among Form 3 students in one of the secondary schools in Malaysia and found
that using Geometer’s Sketchpad has promising implications for the potential for
teaching geometry at the secondary school. This study, however, did not explain to
what extent and how the use of the dynamic software influences the specific Van Hiele
levels.

Theoretical framework

The Van Hiele theory was used to measure the cognitive growth of these students.
This theory has made a significant impact upon geometry education, particularly after
it became known internationally what its impact had been on Russian mathematics
education. Following in the footsteps of Piaget, Pierre and Dina Van Hiele identified
five hierarchical, sequential and discrete levels of geometric development that are
dependent on a learner’s experience. In contrast with Piaget's theory, development is
not dependant on age but rather on experience and the quality of instruction. In this
context, it is useful momentarily to consider the basic tenets of both Piaget and Van
Hiele. Battista and Clements (1995, p. 50) summarised the two theories as follows:

Piaget’s theory, on the one hand, describes how thinking in general progresses from
being non-reflective and unsystematic, to empirical, and finally to logical-deductive.
The theory of Van Hiele, on the other hand, deals specifically with geometric thought
as it develops through several levels of sophistication under the influence of a school
curriculum.

According to Kotzé (2007, p. 22), Piaget's argument can be put like this: there is a
“maturation process” that takes a learner through acquisition, representation and
characterisation of spatial concepts. Van Hiele, however, suggested progress through
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thinking on sequential levels as a result of experience. This experience is almost
entirely dependent on instruction (Larew, 1999). According to their model, learners
have to master a level to be able move to a higher level. The levels, as described by
Mason (2009, pp. 4-5) are as follows:

Level 1 (Visualisation): Students recognise figures by appearance alone, often by
comparing them to a known prototype. The properties of a
figure are not perceived. At this level, students make decisions
based on perception, not reasoning.

Level 2 (Analysis): Students see figures as collections of properties. They can
recognise and name properties of geometric figures, but they
do not see relationships between these properties. When
describing an object, a student operating at this level might list
all the properties he/she knows, but may not discern which
properties are necessary and which are sufficient to describe
the object.

Level 3 (Abstraction): Students perceive relationships between properties and
between figures. At this level, students can create meaningful
definitions and give informal arguments to justify their
reasoning. Logical implications and class inclusions, such as
squares being a type of rectangle, are understood. The role and
significance of formal deduction are, however, not understood.

Level 4 (Deduction):  Students can construct proofs, understand the role of axioms
and definitions, and know the meaning of necessary and
sufficient conditions. At this level, students should be able to
construct proofs such as those typically found in a high school
geometry class.

Level 5 (Rigor): Students at this level understand the formal aspects of
deduction, such as establishing and comparing mathematical
systems. Students at this level can understand the use of
indirect proof and proof by contrapositive, and can understand
non-Euclidean systems.

The Van Hieles considered the levels to be discrete, but other researchers (Clements &
Battista, 1992; Burger & Shaughnessy, 1986, Crowley, 1987) argue that since learners
develop several Van Hiele levels simultaneously and continuously, it is problematic to
assign a learner to a particular level. This is an important reason why this research
focuses on the mean scores of the students per level, rather than to assigning students
to particular levels.

Research question

The current study investigates whether the use of dynamic geometry software as an
integrated part of instruction is beneficial in increasing students’ geometric cognitive
growth, measured in terms of the Van Hiele levels.

Research design

In order to address the above question, a quasi-experimental, non-equivalent
comparison group design was used. The reason for this decision was that practically it
was not possible to assign the students randomly into two groups because of their
timetables. Two geometry classes of a one semester geometry module were used
(Table 1).
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Table 1: Non-equivalent comparison group design

Group Pre-test Treatment Post-test
Experimental/ technology-| CDASSG Van Geometry course and tablet | CDASSG Van
enriched group Hiele Test PC GeoGebra and Cabri 3D Hiele Test
Control group CDASSG Van Geometry course and CDASSG Van
Hiele Test tablet PC Hiele Test

The study used descriptive statistics, a McNemar Test on each individual test item,
and independent t-tests to investigate whether the use of dynamic geometry software
as an integrated part of instruction was beneficial in increasing students’ level of
understanding, as measured in terms of the Van Hiele levels.

Intervention

The researcher offered a six-month geometry module to two groups of third-year pre-
service student teachers at the University of Pretoria, South Africa. This module dealt
with various aspects of geometry, including Euclidean. Problems and activities were
presented and discussed in class, thereby gradually and almost imperceptibly taking
students from one level to the next in terms of the development of their thinking. The
idea was to start with activities on Level 2 and gradually increase the level of thinking
so as to reinforce Levels 3 to 5. The design of the geometry course was loosely based on
the five tenets developed by the Realistic Mathematics Education (RME) movement, as
described by Treffers (1987, cited in Bakker, 2004). The first tenet states that “[a] rich
and meaningful context or phenomenon, concrete or abstract, should be explored to
develop intuitive notions that can be the basis for concept formation” (p. 6). These
activities were meant to develop the students’ understanding of geometry while
solving real-world and theoretical problems. Although there was ample opportunity to
integrate and use dynamic geometry software in this course, the course was not
designed specifically for a technology-enriched environment. Both the control and
experimental groups were taught by the researcher/lecturer with the same amount of
contact time.

The researcher used GeoGebra and Cabri 3D in class when teaching the experimental
group. These programs allow users to drag vertices and points to investigate and
explore mathematical relationships. GeoGebra is an open-source dynamic mathematics
software that combines arithmetic, geometry, algebra, statistics and calculus. Cabri 3D
enables students and teachers to construct and investigate three-dimensional
geometry. It encompasses the benefits of interactive geometry and enables the user to
construct, measure, unfold and rotate objects. The experimental group also spent two
weeks using GeoGebra in the computer lab. The students in the control group were not
exposed in class to either of these software programs. It is however possible that some
of the students in the control group had ‘informal” access to GeoGebra outside the
classroom because it could be downloaded for free.

Examples of activities and how GeoGebra and Cabri 3D were used

e Activity: If you have a piece of land that is a quadrilateral, what kind of
quadrilateral will be formed if you take the midpoint of each of its four sides and
join these midpoints? Explain and justify your answer.
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The idea of the activity was firstly to explore and discover that the new
quadrilateral EFGH is a parallelogram. The experimental group used GeoGebra to
make the construction. The advantage of using GeoGebra is that the mouse could be
used to drag the quadrilateral vertices A, B, C, and D in order to observe the
behaviour of quadrilateral EFGH.

A

C

* Activity: If a line is drawn parallel from one side of a triangle, it will divide the
other two sides proportionally.

GeoGebra was used by the experimental group to make the construction and to
measure the segments accurately. The advantage of using GeoGebra is that the
mouse could be used to drag the vertices A, B and C to create more special cases.
GeoGebra will measure the segments immediately and also update any calculations.

* Activity: Calculate the surface area of the rectangular pyramid with a
perpendicular height of 5 cm and base of 8 cm by 6 cm.

The idea of the activity was to unfold the pyramid and to draw the net and use
Pythagoras Theorem to determine the height of the different triangles. This
unfolding was also illustrated in the class of the experimental group by using Cabri
3D.
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* Activity: What is the sum of the measures of the interior angles of a 1000-gon (a
triangle is a 3-gon)?

The idea of the activity was to force students to use inductive thinking. The
students could find the pattern for a 3-gon (1 triangle), 4-gon (2 triangles), and 5-
gon (3 triangles) and generalise the pattern. GeoGebra was used by the experimental
group to sketch the quadrilaterals and to measure the interior angles.

F J

A typical lesson consisted of a short introduction, after which students worked on a
series of problems and spontaneously bounced ideas off their classmates. When the
majority struggled too much, the researcher intervened and worked with them on
specific problems. The nature of the struggling was threefold, in some instances it was
limited knowledge of the software, sometimes a lack of content knowledge, and in
some instances, limited problem-solving skills. For example, some students struggled
to solve the following problem: What is the sum of the measures of the interior angles
of a 1000-gon (a triangle is a 3-gon)? Some students lack problem solving skills and
tried to construct a 1000-gon using GeoGebra. This approach does not work because it is
too tiresome and will take hours. Other students tried to use inductive reasoning but
did know how to measure the interior angles in GeoGebra.

Participants

The students in both the control and experimental groups were third-year BEd pre-
service teachers who were enrolled for two geometry courses at the University of
Pretoria, South Africa. The study used a control group of 55 pre-service teachers and
an experimental group of 53 pre-service teachers who were enrolled for the geometry
module. These students were selected for the sake of convenience.
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Research instrument

The research instrument that was used was the Cognitive Development and Achievement
in Secondary School Geometry (CDASSG) Van Hiele Geometry Test that forms part of the
CDASSG project developed by Usiskin (1982). The Van Hiele Geometry Test consists
of 25 multiple-choice test questions (five questions on each Van Hiele level). This
instrument was selected because it was easy to analyse, well tested, and widely used
(permission was obtained from Professor Usiskin to use the test). By using the Kuder-
Richardson Formula 20 in his study (1982), he found that the pre-test reliability of this
test was 0.31, 0.44, 0.49, 0.13, 0.10 and 0.39, 0.55, 0.56, 0.30, 0.26 in the post-test for the
questions on Van Hiele levels 1, 2, 3, 4, and 5 respectively. According to Larew (1999,
p. 37), the construct validity of the instrument was established by Senk in 1989:

Senk found that achievement in writing geometry proofs was positively correlated
with Van Hiele level (.50 in the fall and .60 in the spring). Senk also found that in
spring the percentage of students who had mastered proof from each spring Van Hiele
level was as follows: Level 0 -17%; Level 1 -22%; Level 2 — 57%; Level 3 — 85%; Level 4
—100%. These data seem to support that Level 3 (as tested by the CDASSG test) is the
level at which students master proof and that Level 2 is a transitional level ... These
results established the predictive validity of the CDASSG Van Hiele Geometry Test.

Data analysis procedure

Both the experimental and the control group wrote the same pre-test and post-test,
namely the CDASSG Van Hiele Geometry Test, before and after their courses were
presented. During the first and last contact session students were given 30 minutes to
complete the five multiple-choice questions on each of the five Van Hiele levels, thus
in total 25 questions.

As a first step, descriptive statistics were used to determine the average scores of
students in both the control and experimental groups on each Van Hiele level before
and after the course. Secondly, the study employed an independent t-test for each Van
Hiele level, to investigate whether the difference between the pre- and post-test was as
a result of the use of GeoGebra and Cabri 3D during instruction.

Results and discussion

The results of the study suggest that the pre-service mathematics teachers did not have
a sound understanding of more advanced Euclidian geometry. The most problematic
areas were the construction of proofs, understanding the role of axioms and
definitions, and an understanding of non-Euclidean systems. There was a definite
descending trend from Level 1 (Q1 to Q5) through to Level 4 (Q16 to Q20), as
predicted by the literature (see Figure 1). This was, however, not the case with the
Level 5 (Q21 to Q25) questions. The students performed slightly better on the Level 5
questions compared to the Level 4 questions. This was contrary to the Van Hiele
model, which suggests that mastering on one level is a prerequisite for mastering on
the next level.
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Figure 1: Percentage of students who answered the questions correctly
Although Question 4 was poorly answered compared to the other Level 1 questions
(Q1 to Q5), the experimental group did perform slightly better than the control group.

The use of dynamic geometry software probably improved students’ understanding of
the basic definitions and properties of the different quadrilaterals. Question 4 was

“Which of these are squares?”

F G H I

A) None of these are squares
B) G only

C) F and G only

D) G and I only

E) All are squares

Figure 2 analyses the selection of distracters as selected by the students. Although only
a few students selected distracters A and C, distracters D and E attracted quite a
number of students. A possible reason for selecting options D and E could be that
some students were under the impression that the inclusion property works in two
directions. Students who selected option D defined a square as a quadrilateral with
four equal sides.

Students found it difficult to grasp the idea of class inclusion or hierarchical
classification, such as a rectangle being a type of a parallelogram. The idea of class
inclusion falls typically in the abstraction level of geometrical thought, which is Level
3. This may be the reason why Question 14 was also poorly answered, compared to the
other questions (Q11-Q15) on Level 3.
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Answers to Question 4

Figure 2: Percentage of students who selected the different distracters (Question 4).

Which of these can be called rectangles?

P Q R

A) All can.

B) Q only
C) R only
D) P and Q only
E) Q and R only

The same phenomenon has been identified by other researchers. A study done by
Smith (1987) revealed that students find these questions about class inclusion or
hierarchical classification consistently more difficult than some higher-level questions
(on Levels 4 and 5).

Other outlier questions that were poorly answered compared to other questions on the
same level are 10, 19, 21 and 22. These questions will be discussed briefly. Question 10
(Van Hiele Level 2) concerned diagonals, sides and the angle properties of a rhombus.
Question 19 (Van Hiele Level 4) focused on the properties of an axiomatic system
while questions 21 and 22 (Van Hiele Level 5) dealt with non-Euclidean geometry:
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In F-geometry, which is different from the geometry

you are used to, there are exactly four points and six ® P
lines. Every line contains exactly two points. If the

points are P, Q, R and S, and the lines are {P,Q}, {P,R},

{P,S}, {Q,R}, {Q,S}, and {R,S}. Here is how the words

“intersect” and “parallel” are used in F-geometry. The

lines {P,Q} and {P,R} intersect at P because {P,Q} and Q

{P,R} have P in common. The lines {P,Q} and {R,S} are

parallel because they have no points in common. From

this information, which is correct? [ ]

A) {P,R} and {Q,S} intersect.

B) {P,R}and {Q,S} are parallel.

O) {QR} and {R,S} are parallel.

D) {P,S} and {Q,R} intersect.

E) None of the above answers (A-D) is correct.

In order to determine the impact of the use and non use of dynamic geometry software
on students’ understanding of individual questionnaire items, a McNemar test was

applied (see Table 2).

Table 2: McNemar Test applied to each individual questionnaire item

Questi Chi-square results (Sig. 2-sided)
- Control group | Experimental group
Q1 1.000 0.070
Q2 1.000 1.000
Q3 0.500 1.000
Q4 1.000 0.180
Q5 1.000 0.774
Q6 0.832 0.017
Q7 0.607 0.774
Qs 0.383 0.167
Q9 0.754 1.000
Q10 1.000 1.000
Q11 1.000 0.017
Q12 0.664 0.664
Q13 0.004 0.065
Q14 0.096 1.000
Q15 0.185 0.424
Q16 1.000 0.167
Q17 0.508 0.078
Q18 1.000 0.549
Q19 1.000 1.000
Q20 0.238 0.815
Q21 0.063 1.000
Q22 0.065 0.424
Q23 0.001 0.629
Q24 0.180 0.791
Q25 0.000 0.332

Only two items showed that the use of technology has a statistically significant (below
the 5% confidence level) impact on students’ conceptual understanding. That was Q6,
which is about the properties of quadrilaterals, and Q11, which is about mathematical
logic. Three items in the control group showed that the non-technological intervention
had a statistically significant (below the 5% level) impact on students’ conceptual
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understanding. These questions were Q13, Q23 and Q25. Both Q23 and Q25 focused on
mathematical rigor and the students” understanding of formal aspects of deduction.

The means were computed to summarise the scores (out of 5) for each Van Hiele level
for both the pre- and post-tests (see Table 3). The majority of students did not reach the
Van Hiele levels 4 or 5 in both groups and only about half reached Van Hiele level 3. It
came as a surprise that not all pre-service students scored full marks on Van Hiele
levels 1, 2 and 3 in both the control and experimental groups — not even after the
course had been presented.

Table 3: Pre-test and post-test mean scores per Van Hiele level

Mean Mean
Van Hiele Group N (out of 5) improvement SD
pre-test post-test (out of 5)
Level 1 Control 55 3.87 3.93 0.05 1.161
Experimental 53 4.06 4.28 0.23 0.847
Level 2 Control 55 3.56 342 -0.15 1.161
Experimental 53 3.13 3.49 0.36 1.272
Level 3 Control 55 2.09 2.71 0.62 1.459
Experimental | 53 1.62 211 0.49 1.476
Level 4 Control 55 0.80 0.98 0.18 1.073
Experimental 53 0.89 1.30 0.42 1.232
Level 5 Control 55 0.40 1.33 0.93 1.215
Experimental | 53 1.25 1.21 -0.04 1.224

Comparing the mean improvements of the control and experimental groups in Table 3,
it appears that the technology-enriched environment improved the conceptual
geometric growth of students in the experimental group on Van Hiele levels 1, 2 and 4.
However, there was also evidence of cognitive growth when technology was not used
on Van Hiele levels 1, 3, 4 and 5. The negative mean improvement score on Van Hiele
level 5 suggests that the technology-enriched environment did not enhance students’
understanding of the formal aspects of deduction, such as proofs. In the ‘rigor” (Level
5) category (questions that covered the more formal aspects of deduction), the score of
the experimental group declined, while the control group improved on average by 0.93
(out of 5) on Van Hiele level 5 questions.

An independent samples t-test was conducted to compare the improvement in scores
of the control and the experimental groups for each Van Hiele level. The results of the
mean (maximum 5) improvement on each level are presented in Table 3. The results of
the independent t-test show that the only statistically significant difference in the pre-
and post-test scores of the control group was on Van Hiele levels 3 and 5 at p < .05 (see
Table 4). In the case of the experimental group (technology-enriched) there was a
significant difference in the pre- and post-test scores on Van Hiele levels 1, 2, 3 and 4 at
p <.05.

Conclusion

This study sought to use the Van Hiele theory to investigate the geometric cognitive
development of students in a technology (dynamic geometry software) enriched
environment, compared with students in a learning environment without any
technological enhancement. The results suggest that the technology enriched
environment helped to improve the conceptual geometric growth of students on Van
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Hiele levels 1, 2 and 4 which is about geometric visualisation, recognition of properties
of geometric figures, and the construction of proofs. This finding about the
improvements on Van Hiele levels 1 and 2 resonates well with the literature, which
suggests that technology can help to create an active learning environment in which
students can discover, explore, conjecture and visualise.

Table 4: Paired samples t-test

Van Hiele Group Test | Mean | N | SD t df p

Level1 |Control Pre 3.87 | 55| 0904 | -3.48 | 54 | 0.729
Post | 393 | 55 | 1.034
Experimental Pre 406 | 53 | 969 | -1.947 | 52 | 0.050*
Post | 4.28 | 53 | .769
Level 2 |Control Pre 356 | 55| 1.014 | 0929 | 54 | 0.357
Post | 3.42 | 55| 1.117
Experimental Pre 3.13 | 53 | 1.241 | -2.051 | 52 | 0.045*
Post | 3.49 | 53 | 1.137
Level 3 |Control Pre 2.09 | 55| 1.309 | -3.142 | 54 | 0.003*
Post | 2.71 | 55 | 1.370
Experimental Pre 1.62 | 53| 1.259 | -2.420 | 52 | 0.019*
Post | 211 | 53 | 1.354
Level4 [Control Pre 0.80 | 55| 931 | -1.257 | 54 | 0.214
Post | 098 | 55| .952
Experimental Pre 0.89 | 53 | 934 | -2.454 | 52 | 0.018*
Post | 1.30 | 53| .972
Level 5 |Control Pre 040 | 55 | .627 | -5.660 | 54 | 0.000*
Post | 1.33 | 55 | 1.156
Experimental Pre 1.25 | 53 | 1.090 | 0.224 | 52 | 0.823
Post | 1.21 | 53 | .968
* indicates a significance at the 0.05 level (two-tailed)

Dynamic geometry software cannot improve Van Hiele level 4 reasoning directly
because deductive reasoning is about the understanding of axioms and the
construction of proofs. The question then is why this improvement on Van Hiele level
4? According to the Van Hiele theory the use of dynamic geometry software is not
rendered worthless on this level. Larew (1999) argues that in order for students to
reason at the higher levels, there must be sufficient mastery at the lower levels. De
Villiers (2007, p. 55) explained:

This is why I have frequently argued that it is far more meaningful to INTRODUCE
proof within a dynamic geometry context, NOT as a way of making sure, but rather as
a means of explanation, understanding, and discovery before dealing with the more
formal and abstract functions of verification and systematisation.

Although the experimental (technology-enriched) group outperformed the control
group on Van Hiele levels 4, this advantage did not materialise in terms of a better
understanding on Van Hiele level 5. The results also show that the use of dynamic
geometry software, as opposed to a traditional learning environment of the control
group, may have a negative impact on the geometric development on Van Hiele levels
3 and 5. These levels are about informal argumentation and the formal aspects of
deduction. This result suggests that geometric reasoning at the Van Hiele level 5
(deduction) differs in nature compared to the first 4 levels, which concern
visualisation, relationships between properties, informal justification, and proof.



Stols 1245

In fact, several researchers found the last Van Hiele level problematic. Even Pierre Van
Hiele (1986, p. 64) himself, writing subsequent to the demise of his wife, admitted that:
“It takes nearly two years of continual education to have the pupils experience the
intrinsic value of deduction, and still more time is necessary to understand the intrinsic
meaning of this concept”. Weber (2001, p. 102) found that: “While this research has
provided rich data, there is a large and important class of failed proof attempts that it
cannot explain. Students often fail to construct a proof because they reach an impasse
where they simply do not know what to do.” The achievement or lack thereof cannot
be accounted for on the grounds of Van Hiele levels alone. Weber (2001, p. 116)
concluded that students also need strategic knowledge, but is fully aware of the
problematic consequence of the fact: “Since strategic knowledge is heuristic, designing
activities that will lead students to acquire this knowledge will be a formidable task.”
De Villiers (1987, p. 24) pointed out that “two aspects of the Van Hiele theory need
clarification and further research, namely a refinement with regard to the levels at
which deduction (as justification, explanation and systematisation) is supposed to
occur, as well as the relationship between hierarchical thinking and deduction”.

Against this background it is understandable that the use of dynamic geometry
software does not support the development of the formal aspects of deduction. The
results of this study therefore contradict some of the findings of other studies, as
mentioned in the literature review, which suggested that the use of technology always
supports the development of higher-order thinking.

Limitations

A limitation of the present study was the fact that the Van Hiele test that focuses on
Euclidean geometry was used. The course offered covered not only Euclidian
geometry, but also analytical geometry, transformation geometry, and volumes and
surface areas. However, this particular test still gave us insight into students’
understanding of one of these topics. A possible idea for future research is the
development of a new and more comprehensive geometry test.

Another possible limitation of this study in terms of the Van Hiele module is identified
by Salomon (2005, p. xvii), who warned that:

Related to this is the assumption that wisely integrating technology into instruction will
yield better learning outcomes assessed by the same yardsticks. But this totally ignores
the observation that the use of different instructional means afford different kinds of
learning activities which, in turn, facilitate the attainment of different kinds of outcomes.
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