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Automatic assessment and evaluation of team performance during collaborative tasks is key 
to the research on learning analytics and computer-supported cooperative work. There is 
growing interest in the use of gaze-oriented cues for evaluating the collaboration and 
cooperativeness of teams. However, collecting gaze data using eye-trackers is not always 
feasible due to time and cost constraints. In this paper, we introduce an automated team 
assessment tool based on gaze points and joint visual attention (JVA) information drawn 
from computer vision solutions. We evaluated team collaborations in an undergraduate 
anatomy learning activity (N = 60, 30 teams) as a test user study. The results indicate that 
higher JVA was positively associated with student learning outcomes (r(30) = 0.50, p < 0.005). 
Moreover, teams who participated in two experimental groups and used interactive 3D 
anatomy models, had higher JVA (F(1,28) = 6.65, p < 0.05) and better knowledge retention 
(F(1,28) = 7.56, p < 0.05) than those in the control group. Also, no significant difference was 
observed based on JVA for different gender compositions of teams. The findings from this 
work have implications in learning sciences and collaborative computing by providing a 
novel joint attention-based measure to objectively evaluate team collaboration dynamics. 
 
Implications for practice or policy: 
 Student learning outcomes can be improved by receiving constructive feedback about 

team performances using our gaze-based collaborative learning method. 
 Underrepresented and underserved minorities of science, technology, engineering and 

mathematics disciplines can be engaged in more collaborative problem-solving and 
team-based learning activities since our method offers a broader reach by automating 
collaboration assessment process.  

 Course leaders can assess the quality of attention and engagement among students and 
can monitor or assist larger numbers of students simultaneously.  

 
Keywords: collaborative learning analytics, co-located team-based learning, gaze following, 
joint visual attention, deep learning, experimental design 

 
Introduction 
 
Collaborative learning is an essential educational instrument for teaching and learning. As a team-based 
and student-centred educational practice, it promotes student motivation and enhances knowledge retention 
via teamwork and cooperation (Sung & Hwang, 2013). While collaborative learning has been introduced 
and practiced in co-located settings (Barmaki et al., 2019; Huang et al., 2019; Prinsen et al., 2007; Schneider 
et al., 2018; Sung & Hwang, 2013), as well as distributed settings (de Freitas & Griffiths, 2007; Li et al., 
2008; Schaf et al., 2009; Tao et al., 2019), measuring and evaluating collaboration still remains a challenge. 
Fairness of group work distribution (Ng et al., 2019), rationality of collaborative conditions (Innes & 
Booher, 2016) and automatism of process analytics (Rosé et al., 2008) are some of the core issues that need 
to be considered during collaborative learning analytics, especially in relatively large teams (Bertsimas & 
Gupta, 2016). Understanding gender effects in collaboration dynamics and investigating best learning 
practices in teams are also crucial aspects of collaborative learning analytics, which is the focus of our 
paper. 
 
Gaze-oriented cues can be used as a means of obtaining information about the cognitive activities of a 
collaborator, and there is evidence that students look at and point to the same object during collaborative 
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co-located learning activities (Schneider & Pea, 2013; Schneider et al., 2018). This gaze alignment is called 
joint visual attention (JVA; Van Rheden et al., 2017) – see Figure 1, for example. JVA is a strong predictor 
of successful collaboration among students (Pietinen et al., 2010; van der Meulen et al., 2016). Compared 
with collecting traditional self-reported survey data or collaboration system data for one-time performance 
evaluation (Wendler, 2006), capturing gaze alignment during the entire collaborative process with the JVA 
features can reveal more valuable information about the quality of interactions among teams (Wahn et al., 
2016). New technologies provide innovative methods to extract and measure JVA features. A growing 
number of researchers have taken advantage of sensor-based eye-trackers to objectively measure gaze 
features during various social interactions, especially for co-located collaborative tasks (Huang et al., 2019; 
Schneider et al., 2018). However, despite the provision of highly accurate data from eye-tracking devices, 
these sensors are usually highly priced and may introduce limitations for educational study settings, 
specifically those needed to be carried out in classrooms and not in research labs. For example, the 
calibration might be a time-consuming process or the study activity is needed to be completed within the 
limited tracking range of the sensors. 
 

  
(a) (b) 

Figure 1. Examples of the gaze-following method in our study: (a) with JVA feature: students’ gaze points 
converge on the tablet; (b) without JVA feature: students look at their own notes. 
 
With the emergence of different deep learning techniques, the gaze tracking problem can be approached 
differently. Using deep neural networks to track the gaze features from a sequence of 2D images or videos 
is practical and robust in understanding and interpreting student behaviours in human-human and human-
object interaction (Lian et al., 2018; Recasens et al., 2015). For example, when two students are looking 
for a path from the library to the gym on a single university map, by following their gaze direction, we can 
easily find out if they are sharing the same information and we can predict whether they will pick the same 
path. Compared with eye tracking and gaze estimation, the gaze following method (Hansen & Ji, 2009; 
Lian et al., 2018; Santini et al., 2017) not only estimates the gaze direction but also predicts the gaze point 
from the image without the need for specialised hardware (e.g., head-mounted camera, infrared light 
source) and obtrusive gaze calibration procedure. Figure 1 shows the application of gaze following method 
on top of two images captured from our test user study. 
 
In this paper, we introduce a computer vision-based solution for team performance evaluation using mutual 
gaze point predictions, along with a collaborative anatomy learning activity as a test user study for our 
approach. We recorded collaborative activity sessions as a sequence of images with a colour camera. For 
collaboration analysis, we first tracked team members’ gaze directions and the focus objects during the 
activity using the gaze following method (Lian et al., 2018) with a deep neural network framework. We 
then extracted the JVA features of the teams and analysed them with other collected data, including post-
test scores and demographics information related to team gender composition. This study hypothesised that 
students who share mutual gazes during the activity – for example, those teams with higher JVA values – 
obtain higher scores in their post-activity knowledge tests as well since they engage more in collaborative 
tasks. We were also interested in understanding if JVA values are varied significantly in different study 
conditions and different gender compositions of teams for collaborative learning. 
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This paper is organised as follows: First, we review the literature on the related work in anatomy education, 
gender effects, collaborative learning analytics, JVA applications and gaze following approaches. We then 
introduce details of the intervention, data sets, the gaze following method and our proposed assessment 
measures for collaboration. Finally, we present the findings from our test user study and discuss further 
implications. 
 
Literature review 
 
Educational technology for anatomy education 
 
In the domain of human anatomy learning, different education technologies have recently replaced 
traditional teaching methods such as lectures, cadavers and textbooks. With modern computer-assisted 
technologies, 3D visualisation methods improve students’ performance by allowing them to explore 3D 
anatomical models on 2D mobile device screens (Yammine & Violato, 2015). Mobile-based applications 
and web-based 3D games have been used as learning tools for the study of human skeletal, muscular and 
cardiovascular systems to name a few (Golenhofen et al., 2020; Lemos et al., 2019). Virtual reality (VR) 
and augmented reality (AR) techniques have been adopted into medical education and surgical training 
fields in recent years (Maresky et al., 2019; Silva et al., 2018). As powerful learning tools, VR and AR 
engage students in an immersive environment with audio and visual interactions, and stereoscopic 3D 
models to enhance their learning experience (Barmaki et al., 2019; Hackett & Proctor, 2018; Luursema et 
al., 2006, 2008). We evaluated team performance in a controlled study that leveraged modern anatomical 
content visualisation in 3D with handheld tablet devices and large-scale AR displays. 
 
Gender effects and collaboration 
 
As the results of the different socialisation processes, gender differences have been discussed by recent 
studies at the team level. The relationship between gender and collaboration is not uniform, and it varies 
based on different disciplines and tasks (Fernandez-Sanz & Misra, 2012; Wegge et al., 2008). Researchers 
have shown that females have better information-processing skills than males during cognitive tests 
(Rabbitt et al., 1995; Schaie & Willis, 1993). Females’ higher management ability in collaborative tasks 
has also been highlighted (Bear & Woolley, 2011; De Paola et al., 2018; Eagly & Carli, 2003). Several 
studies (Bear & Woolley, 2011; De Paola et al., 2018; Eagly & Carli, 2003; Rabbitt et al., 1995; Schaie & 
Willis, 1993) concluded that collaboration performance would be improved with females involved. Other 
research showed that women often had negative experiences on teams due to gender biases at the technical 
level, especially in science, technology, engineering and mathematics (Meadows et al., 2015; Meiksins et 
al., 2015). Conversely, some reported no significant gender effect. Andersson (2001) argued that, although 
females have better performance on individual memory tasks, no gender effect was found in collaborative 
tasks. Prinsen et al. (2007) noted that females were more likely to collaborate, and males were more 
assertive in computer-mediated communication (Herring, 1996), and computer-supported collaborative 
learning (CSCL; Lipponen, 1999) settings. In the same 2007 study, Prinsen et al. also acknowledged that 
different distributions of roles in collaborative learning might change gender contributions. We explored 
potential gender differences in our anatomy learning study in association with learning outcomes and joint 
attention measures. 
 
Collaborative learning analytics 
 
The importance of social interactions during the learning process has been emphasised (Okita et al., 2008). 
Collaborative learning not only helps students to improve teamwork skills but also promotes learning 
motivation, increases learning experience, enhances brainstorming skills (Guo & Barmaki, 2019; Webb et 
al., 1995) and facilitates their learning performance during team interactions (Barmaki et al., 2019; Sung & 
Hwang, 2013). Consequently, researchers have highlighted that instead of using new learning formats, more 
attention should be paid to the measurements of and access to collaboration performance (Huang et al., 
2019). In early attempts to analyse collaborative learning, Soller and Lesgold (1999) provided a practical 
collaborative learning framework and evaluated active learning skills using conversational interaction data 
collected from surveys. With advancements in CSCL research, machine learning techniques have been used 
to predict student grades, using support vector machines (Baker & Yacef, 2009), decision trees (Rosé et al., 
2008) and regression (Kotsiantis, 2012) to name a few. Those solutions either established effective 
collaborative learning models or built reasonable standards for evaluating collaboration performance based 
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on single-time solicitation techniques. However, the data used in those models were collected from class 
attendance, quiz scores, or reports, which may represent only students’ one-time or episodic performance 
during the learning activities.  
 
Collaborative learning analytics research has been much of attention mainly in flipped classrooms with 
collaborative problem-solving activities primarily in science, technology, engineering and mathematics, 
mediated by computers either in co-located or distributed learning settings. The majority of research for 
distributed studies lies in CSCL studies; for example, Subburaj et al. (2020) presented a collaborative 
problem-solving model for an educational physics game with 101 teams of undergraduate students. Facial 
expressions, acoustic-prosodics, eye gaze and task context information were captured in the last minute of 
the intervention and used as measures for predicting success at solving the game. The combined predictive 
model of non-verbal cues with language-based features outperformed other predictive models. Also, 
behavioural cues such as eye gaze (Vrzakova et al., 2019), head pose (Otsuka et al., 2018), prosody and 
acoustics (Miura & Okada, 2019; Murray & Oertel, 2018), as well as language (Flor et al., 2016) have been 
investigated in collaborative learning analytics for group outcomes including task performance. In co-
located learning scenarios, despite their similarity of approaches to distributed settings, physical proximity 
and movement dynamics in teams were a key factor in the collaboration. In our previous work (Guo & 
Barmaki, 2019), we used an object detection approach atop image data from a collaborative anatomy 
learning activity to extract useful proximity features, such as the locations of students and objects in the 
scene. Research also used multimodal learning analytics techniques and high-level features from dissimilar 
sources such as video and sketchpads to discriminate between experts and non-experts in groups of students 
(Ochoa et al., 2013), and understand team performance from physical engagement, satisfaction and 
individual accountability perspectives (Spikol et al., 2017). 
 
JVA applications 
 
JVA features have been introduced to a broad range of applications, including collaborative search 
(Brennan et al., 2008), mediated interaction (Bente et al., 2007), infant-caregiver interaction (Markus et al., 
2000) and training for children with autism (Whalen & Schreibman, 2003). Interest has grown in the use 
of synchronised eye-trackers to quantitatively measure gaze alignment in various collaborative situations 
(Bryant et al., 2019; Huang et al., 2019; Kim et al., 2020; Van Rheden et al., 2017). However, there are 
challenges in using eye-tracking sensors, including the high cost of the devices, and restricted 
environmental and calibration settings (e.g., the camera should be precisely in front of the student within a 
close distance and on top of a specific panel (Huang et al., 2019)). Image-based computer vision methods 
– as a more affordable alternative approach – have also been used for extracting gaze features in previous 
studies. Using a colour camera, Yücel et al. (2013) presented an image-based head pose estimation method 
for establishing joint attention between an experimenter and a robot. Harari et al. (2018) used image 
segmentation to identify the common gaze target by combining the estimated 3D gaze direction. 
 
Gaze following using deep learning 
 
There has been an expanding interest in the estimation and reconstruction of human gaze direction from 
2D images to identify their activities in the scene using various deep learning frameworks. Gaze following 
is the task of following people’s gaze in a scene and inferring what they are looking at. Compared with eye-
tracking and gaze estimation, gaze following not only estimates the gaze direction but also detects the focus 
point from the image (Lian et al., 2018). Patacchiola and Cangelosi (2017) proposed a face detector to 
extract face landmarks and estimate head poses using convolutional neural networks. Marín-Jiménez et al. 
(2014) used head pose detection with implicit pose information to detect human-human interaction in 
videos. However, those works were limited by the complexity of inputs (massive eye-tracking data: (Yücel 
et al., 2013); restricted situations (resolution of the image: (Marín-Jiménez et al., 2014); and field of view 
(the distance between the camera and students: (Zhu & Ramanan, 2012). In the work of Recasens et al. 
(2015), the gaze point of multiple observers in daily scenarios was predicted using deep neural networks 
and saliency models of attention. Mukherjee and Robertson (2015) combined RGB-depth images and 
multimodal data to reconstruct 3D head poses and follow gaze direction in images and videos. These studies 
motivated the work reported here, to use a deep learning approach to target gaze alignment features for the 
novel application of collaborative learning analytics.  
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We were interested in understanding how two students are interacting with one another, or with objects, 
and following the gazes of multiple observers in a scene. During the preparation stage of our study, we 
tested various algorithms for gaze feature extraction, including facial landmark detection (Patacchiola & 
Cangelosi, 2017) and head pose detection (Marín-Jiménez et al., 2014) to predict gaze direction. However, 
neither facial landmark nor head pose can be detected completely when participants are back to the camera 
or face downwards, which was not practical for our study (see Figure 2(a) and (b)). Hence, we used gaze 
following method (Lian et al., 2018) to estimate both the gaze direction and the gaze points to collect 
human-human interaction information. Further details about our approach are presented in the following 
section. 
 

(a) (b) (c) 
Figure 2. Example results from the application of multiple methods on our data set (a) head pose detection 
(Marín-Jiménez et al., 2014), (b) facial landmark detection (Patacchiola & Cangelosi, 2017) and (c) gaze 
following method (Lian et al., 2018).  
 
Method and materials 
 
Intervention 
 
We conducted a between-subjects study of collaborative muscle learning intervention in a laboratory course 
(General Biology) as part of an undergraduate premedical program at Johns Hopkins University. A total of 
301 students in 138 teams participated in the original study, we selected the data from a subset of teams 
with two members (N = 60, 30 teams) as our test data set. Students worked in teams to complete a muscle 
painting activity (Barmaki et al., 2019; Marieb, 2015) as part of their required laboratory activities. They 
were expected to identify and paint the major muscles of their body using one of the learning instruments 
(textbook, tablet or AR) and washable painting supplies. The first student played the role of a model, while 
their teammate, as a painter, located the major upper-limb muscles with the aid of their laboratory manual 
(Marieb, 2015) or other digital devices and painted the model’s upper limb. Afterward, students switched 
roles, and the upper-limb painter became a model for the lower limb. The goal of the learning activity was 
to ensure all students could gain knowledge of anatomy in a collaborative effort. See Figure 3 to learn more 
about the intervention details. 
 
As briefly mentioned, our study had three different settings based on instrumental tools. Students in the 
control group used textbooks as their learning tools. In experimental group I, instead of a textbook, students 
used our in-house interactive app on the tablet as a 3D musculoskeletal visualising system. Experimental 
group II used a screen-based AR system – also developed internally – where students could see themselves 
with augmented anatomy visualisations on a large display (Barmaki et al., 2019). The knowledge base 
information presented in all instrumental tools was identical to mitigate potential confounding factors 
related to student workload and learning. There was also a mobile workstation inside the laboratory room 
to capture snapshots from students during learning activities. Figure 3 shows the three study conditions of 
the learning activity.  
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(a) (b) (c) 
Figure 3. Study conditions for students in pairs to complete anatomy painting intervention using (a) a 
textbook, (b) an interactive app on the tablet, or (c) a screen-based AR system. 
 
The study was approved by the Institutional Review Board (Protocol ## HIRB00005021) in May 2018, and 
oral informed consent was obtained from each participant student before the study commenced. After 
consent, students entered the activity room with their teammates and completed the task. All students 
completed both pre- and post-activity questionnaires and knowledge tests. 
 
Data sets 
 
Surveys  
Using the Qualtrics application, survey data was collected from all students individually after completing 
the activity. The survey consisted of demographics information, usability questions and a post-test about 
the human muscle system.  
 
Image training data  
We adopted GazeFollow, the large-scale gaze-following data set used for training from Recasens et al.’s 
(2015) study. This benchmark data set had 130,339 people and 122,143 images in total with gaze points 
inside the image.  
 
Image test data  
The test data set consisted of 4,646 images collected from 30 teams (pairs) of students during the 
collaborative learning activity in the three conditions (10 teams from each condition of the textbook, tablet 
and AR, totalling images from 30 teams). Images were captured every 10 seconds, and each image file was 
timestamped. The resolution of each test image was 2560 x 1440 pixels. Images with camera difficulties or 
additional individuals in the scene were discarded. 
 
Gaze following framework 
 
To extract shared gaze features from the images, we needed to estimate the students’ gaze direction and 
focus in the scene. Thus, we applied a two-stage gaze following approach (Lian et al., 2018) on our test 
data set. This method was very suitable for our project since it was capable of detecting the gaze direction 
from the head image and predict the potential gaze point along the gaze direction, via deep neural networks. 
The gaze following approach and its underlying network architecture is shown in Figure 4. 
 
The gaze following framework was inspired by the human behaviour of gaze following (Lian et al., 2018). 
First, a gaze direction was estimated from the gaze direction pathway. In the gaze direction pathway, the 
resized head image (224 x 224) – image sizes are listed in pixels hereafter – was fed into the convolutional 
neural network ResNet-50 (Rezende et al., 2017) for feature extraction. Then, the head features were 
concatenated with head position features encoded by one fully connected layer for gaze direction 
estimation. A coarse gaze direction was predicted as the vector output and then encoded as multi-scale gaze 
direction fields. The gaze point was assumed to be in the gaze direction or line of sight. Next, the multi-
scale gaze direction fields were combined with the scene contents (224 x 224) and fed into the heat map 
pathway for heat map regression using a feature pyramid network (Zhao et al., 2019).  



Australasian Journal of Educational Technology, 2020, 36(6).  

 
 

59 

The heat map (56 x 56) represented the probability distribution of the gaze point, and the point with the 
maximum value of the heat map represented the probable gaze point of the scene. 
 

 
Figure 4. The network architecture for the gaze following method (Lian et al., 2018) atop our collaborative 
study image frames. Using the heat map, we can predict the gaze point convergence (focus point) of 
students in the collaborative activity. 
 

(a) (b) (c) 

(d) (e) (f) 
Figure 5. Gaze following results for three sample frames: (a) gaze directions with blue lines; (b) output 
without the JVA feature (Euclidean distance between the gaze points of students is greater than 100 pixels; 
(c) output with the JVA feature (Euclidean distance between the gaze points is smaller than 100 pixels); 
and (d–f) heat maps associated with the gaze points. 
Note. While two distinct sheets of papers are predicted as gaze points for team members in (e), (d) and (f) are examples 
of the convergence of visual attention on the tablet device; thus, the Is_JVA variable is true in (d) and (f). 
 
Lian et al. (2018) claimed that their gaze following approach outperformed other existing methods in gaze 
point prediction. Compared with state of the art (Recasens et al., 2015), Lian et al.’s method decreased 
23.68% of the Euclidean distance error for gaze point on the GazeFollow data set. We chose Lian et al.’s 
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gaze following model because it managed to simulate the gaze following behaviour of a third person view. 
Furthermore, Lian et al. trained this model robustly on a large data set by using the heat maps for focus 
point prediction. Figure 2 highlights its strengths over other existing solutions. 
 
The gaze following output shown in Figure 5(a) visually draws a blue gaze line on the original image for 
each individual in the scene. The blue line is initiated at the eye location and terminated at the predicted 
final gaze point. The highlighted region in the corresponding heat map – Figure 5(d–f) – represents the 
predicted gaze point where the students are looking. The output also marks the coordinates of each gaze 
point – which are used in our approach as a collaboration metric. We were interested in the automatic 
recognition of joint or mutual gaze visual attention among students in every image sequence during the 
collaborative task. Further details about the JVA feature analysis as a collaboration measure are presented 
in the following section. 
 
Evaluation measures 
 
We analysed team performance and collaboration based on objective measures related to joint attention, 
knowledge retention, study conditions and gender composition of the teams. These evaluation measures of 
collaboration are described as follows.  
 
JVA ratio  
JVA represents the shared focus of two or more individuals and plays a key role in collaboration prediction 
(Bruinsma et al., 2004). In this work, we defined the JVA ratio for each team based on the frequency with 
which the two students shared gazes during the collaborative activity, divided by total image frames 
captured from the team – a normalised measure of JVA based on the total activity frames of the teams. 
Since there was a lot of cooperation between painters and models during the learning activity process, they 
needed to maintain joint attention most of the time: while painting, discussing and looking at the learning 
materials. For example, when the painter was painting, both painter and model may have looked at the same 
location, the active painting region. When students needed to find the muscle’s correct location, the painter 
and the model may have shared the screen of the interactive app on the tablet or the AR view to zoom in 
on the 3D musculoskeletal system. 
 
We used Euclidean distance between the gaze points detected by the gaze following method for automatic 
identification of the JVA in each image frame (Is_JVA was a Boolean variable per each frame; it was set 
to false by default). Based on image size and resolution, we recognised the JVA - our mutual gaze feature 
- and set Is_JVA as true, if that distance was smaller than 100 pixels. For each team, the JVA ratio was 
computed by number of frames in which the Is_JVA variable was true, divided by the total number of 
frames. Some examples with and without JVA recognition are shown in Figures 1 and 5. We were interested 
to learn if a higher JVA ratio is associated with better learning outcomes. 
 
Team post-test score 
The key objective of this collaborative learning activity was to enhance the anatomy knowledge retention 
of students. All participants needed to independently – not with the assistance of their peers – locate and 
label five muscle names in a diagram of the human musculature in the post-test; thus, individual test scores 
ranged between 0 and 5 with discrete values. Since we used the average of post-test scores per team and 
named it team post-test score, the team post-test score was still in the same range, but non-discrete values 
were also observed in the data set.  
 
Study conditions 
As mentioned earlier, there were three different conditions or settings for our muscle painting study. 
Students in the control group used textbooks as their learning tools. The experimental groups either used a 
tablet or the screen-based AR system to complete the task. We wanted to investigate the differences in team 
performance based on these three conditions and the two groups. 
 
Gender composition  
Students were preassigned randomly to teams to complete the muscle painting activity. There were three 
possible gender compositions per pair of students: male pair, female pair and mixed pair. We were 
interested in evaluating the gender effects in collaborative learning and investigating if any significant 
variability of JVA ratios and knowledge tests was present in female-female, male-male and male-female 
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(mixed) pairs of students. As females had a higher enrolment rate in the General Biology lab – which was 
a common pattern in premedical programs across the nation (Barzansky, 1997; Brooks, 2017) – our study 
participants were also mostly females with a total of 38 out of 60 study participants (out of the 30 teams, 
half of them were female-only, eight were mixed and the remaining seven were male-only teams). This 
does not mean gender imbalance in the data since the sample population is a representative subset of the 
target population in premedical programs (Barzansky, 1997; Brooks, 2017).  
 
Results 
 
In the following, we report descriptive and inferential results from our test user study. In particular, we 
looked at the JVA ratio – an automatically generated measure based on our proposed framework using deep 
neural networks – in association with our evaluation measures. Table 1 summarises the descriptive statistics 
for pairs of students in each study condition, including the number of teams, mean values and standard 
deviations for JVA ratios and team post-test scores.  
 
Table 1 
Summary of JVA ratio and team post-test score with different instrumental tools 

Group Condition 
(Instrumental tool) 

Observation 
(teams) 

JVA ratio (%) Team post-test score 

n M ± SD M ± SD 
Control Textbook  10 31.30 ± 9.73 1.15 ± 0.95 
 Tablet  10 46.50 ± 15.43 2.35 ± 1.03 

AR 10 44.60 ± 17.28 2.35 ± 1.42 
Experiment Combined (tablet & AR) 20 45.55 ± 15.97 2.35 ± 1.20 
Total Textbook, tablet, AR 30 40.80 ± 15.59 1.95 ± 1.25 

Note. JVA = joint visual attention; M = mean; n = number of observations; SD = standard deviation; Team post-test 
score is in range from 0 to 5; JVA ratio (%) is in [0–100] range. 
 
Participants 
 
We analysed data from 60 participants (38 females) in 30 teams. All of these students were enrolled in the 
undergraduate premedical program at Johns Hopkins University. There were 10 teams for each condition 
– textbook, tablet and AR. Knowing that tablet and AR conditions were part of the experimental group, we 
had 20 teams in the experimental group and 10 in the control group. Data from teams with a larger size, 
those in different activity rooms, those with students under 18 years of age and those with incomplete data 
were excluded in this study.  
 
JVA ratio 
 
JVA ratio was the percentage of the time teams had shared mutual or joint attention during the learning 
activity. Although no significant difference between the three study conditions and the JVA ratio was 
observed, the p value was very close to the critical value of α (F(2,27) = 3.26, p = 0.054, ns – ns stands for 
statistically non-significant). Interestingly, the JVA ratio of the two experimental groups of tablet and AR 
(n = 20, M = 45.6, SD = 15.97) was higher than those in the control condition who used textbook (n = 10, 
M = 31.3, SD = 9.73) and this finding was statistically significant with a large effect size (F(1,28) = 6.65, p < 
0.05, Cohen’s d = 1.00). Table 1 and Figure 6 provide additional information about the JVA ratio 
distribution across all study conditions and groups. 
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(a) (b) 

Figure 6. The boxplot with observed data points for JVA ratio across (a) different study conditions 
(instrumental tools) of textbook, tablet and AR, (b) two groups of control (textbook) and experiment (tablet 
and AR). JVA ratio was significantly different between control and experimental groups. 
 
Team post-test score 
 
A significant difference based on team post-test scores was observed among study conditions of textbook 
(M = 1.15, SD = 0.95), tablet (M = 2.35, SD = 1.03) and AR (M = 2.35, SD = 1.20), (F(2,27) = 3.64, p < 0.05, 
r2 = 0.16, medium effect size). Post-hoc comparisons indicate that pairs of textbook and tablet, and textbook 
and AR conditions were different from each other based on differences in the means. Similarly, the team’s 
average post-test score from the two experimental groups of tablet and AR (M = 2.35, SD = 1.20) was 
significantly higher than those in the control group (M = 1.15, SD = 0.95), and this finding was also 
statistically significant with a large effect size (F(1,28) = 7.56, p < 0.05, Cohen’s d = 1.06). See Figure 7 to 
learn more.  

  
(a) (b) 

Figure 7. The boxplot with observed data points for team post-test score across (a) different study 
conditions (instrumental tools) of textbook, tablet and AR, (b) different groups of control and experiment.  
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JVA ratio and team post-test score 
 
We also measured the association between JVA and team post-test scores using the Pearson correlation 
coefficient. The Pearson correlation measure indicates a significant positive linear association (Zou et al., 
2003) with a strong relationship between the JVA ratio and team post-test scores (r(30) = 0.50, F(1,28) = 9.33, 
p < 0.005, r2 = 0.25, large effect size). The scatter plot drawn from data is shown in Figure 8. This finding 
shows that JVA features are strongly associated with learning outcomes, such as post scores. Points on the 
scatter plot closely resemble a straight line with a positive slope, which shows that post-test scores increase 
with higher JVA ratios. Therefore, the team with a high frequency of sharing gazes is more likely to achieve 
better outcomes in the post-test. 
 

 
Figure 8. The scatter plot of JVA ratio with team post-test scores. The Pearson correlation and its 
underlying regression model indicate a significant positive correlation between JVA ratio and team post-
test score.  
 
Gender composition 
 
We recorded the gender composition for each of the 30 teams from the survey data and investigated the 
gender effects on collaborative learning during the activity (see Table 2 and Figure 9 to learn more). 
Overall, mixed pairs (eight teams) achieved the highest JVA ratio (M = 47.0, SD = 15.46) and the best 
learning outcomes from post-test scores (M = 2.50, SD = 1.28), but this variability was not statistically 
significant (F(2,27) = 1.29, p = 0.29, ns). Moreover, no significant difference was observed based on gender 
composition in teams for JVA ratios (F(2,27) = 1.10, p = 0.35, ns). 
 
Table 2 
Summary of JVA ratio and team post-test score with different gender compositions 

Gender composition Observation (teams) JVA ratio (%) Team post-test score 
n M ± SD M ± SD 

Females 15 37.00 ± 15.05 1.63 ± 1.29 
Males 7 41.86 ± 16.72 2.00 ± 1.04 
Mixed 8 47.00 ± 15.46 2.50 ± 1.28 
Total 30 40.80 ± 15.59 1.95 ± 1.25 

Note. JVA = joint visual attention; M = mean; n = number of observations; SD = standard deviation; Team post-test 
score is in range from 0 to 5; JVA ratio (%) is in [0–100] range.  
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(a) (b) 

 
Figure 9. The boxplot with observed data points across teams with different gender compositions: (a) JVA 
ratios, (b) team post-test scores. No significant difference was observed in the study for JVA ratios nor 
post-test scores for different pairs of students.  
Note. Among these 30 pairs or teams of participants, there were 15 female-female, seven male-male and eight mixed 
pairs. 
 
Discussion 
 
JVA ratio 
 
Capturing gaze alignment during the collaborative process with the JVA criterion can reveal valuable 
information about the quality of interaction among teams (Bruinsma et al., 2004; Bryant et al., 2019; 
Markus et al., 2000; van der Meulen et al., 2016; Wahn et al., 2016); although, not many studies have 
investigated computer vision–based approaches to better measure and capture it in co-located team-based 
learning activities. In this paper, we introduced a novel assessment tool for automatic team performance 
evaluation using mutual gaze information using the gaze following method (Lian et al., 2018). Compared 
with other methods using traditional one-time performance evaluation (Wendler, 2006) or high-cost eye-
tracking devices (Bryant et al., 2019), our method was able to automatically extract JVA features during 
the whole learning process with a simple colour camera. We also investigated the effectiveness of our JVA 
method in a test user study. Results show that the JVA ratios of the two experimental groups of tablet and 
AR were significantly higher than those in the control group, who used the textbook. Our findings are 
supported by research based on gaze information from student users that looked at e-textbooks as a potential 
alternative learning tool (Gelderblom et al., 2019), although that research was limited to individual learners 
and not teams. 
 
Team post-test score 
 
Post-test scores indicate student achievement from the learning activity (Morris, 2008). In this study, we 
set up three different study conditions by using different instrumental tools for an anatomy learning activity. 
Right after the activity, post-test scores were collected from students using a survey completed individually, 
and the team post-test score was calculated as the average of team members’ individual test scores. Team 
post-test scores of the two experimental groups of tablet and AR were significantly higher than those in the 
control group. Furthermore, our research on collaborative learning analytics conducted with 288 students 
in May 2017 (Barmaki et al., 2019) also showed that higher test scores were achieved from experimental 
groups who used the AR system. These findings are in agreement with previous studies in anatomy 
education, which highlighted the potential of using evolving technologies such as mixed and augmented 
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realities for enhancing student learning and outcomes in anatomical science education (Maresky et al., 
2019; Nicholson et al., 2006; Silva et al., 2018).  
 
JVA ratio and team post-test score 
 
There was a significant positive linear association with a strong relationship between the JVA ratio and the 
team post-test score. This is in agreement with the hypothesis of our study: students who shared mutual 
gaze with their teammates for a longer time on the learning task were more likely to obtain higher scores 
in their post-activity knowledge tests. This finding also agrees with previous research on the positive effects 
of sharing a gaze on learning outcomes, including imitation and socio-cognitive performance (Carpenter & 
Tomasello, 1995; Hirotani et al., 2009). Features like hand distance, speed and face count have been used 
as high-level features for collaborative learning analytics (Spikol et al., 2017), and they seem to have 
potential in practice-based learning. Our findings from the JVA and team performance outcomes also show 
the potential of proximity-based, behavioural measurements in co-located or practice-based collaborative 
learning analytics. 
 
Gender composition 
 
There were three possible gender compositions per pair of students: females, males and mixed pairs. About 
half of the participants were in female-only teams, which is also a common gender enrolment rate in life 
sciences and premedical programs (Barzansky, 1997; Brooks, 2017). Even though mixed teams had slightly 
higher JVA ratios and better learning outcomes, no significant difference was observed based on the gender 
composition of the teams neither for the JVA ratio nor for the team post-test score. These findings are 
consistent with previous studies that noted no gender effect in life sciences studies (Andersson, 2001; 
Prinsen et al., 2007).  
 
In addition, we found that compared with control groups using text and 2D anatomy models from the 
textbook, the students in both experimental groups had higher JVA ratios and better knowledge retention 
by interacting with 3D models on the tablet screen or AR system. Specifically, in teams with the screen-
based AR, students could easily collaborate and locate specific muscles with high accuracy projected on 
top of their own bodies. This outcome was also highlighted in a recent meta-analysis study as collaborative 
learning being the most beneficial approach in any AR interventions (Garzón et al., 2020). Our study also 
provides further evidence that 3D visualisation technologies increase students’ engagement and improve 
their knowledge retention in human anatomy learning (Hackett & Proctor, 2018; Luursema et al., 2008; 
Nicholson et al., 2006; Yammine & Violato, 2015).  
 
Conclusion 
 
In this paper, we introduced an automated team assessment tool based on gaze points and JVA information 
extracted by computer vision solutions. The results from a pilot study indicate that experimental teams who 
interacted with 3D digital learning tools had a high frequency of JVA and better knowledge retention 
outcomes than those in the control group. We also investigated the association of user study gender 
composition effects on JVA ratios and team test scores. We found no significant difference for JVA ratios 
or post-test scores among different teams with varied gender compositions.  
 
This work was a preliminary study to automatically assess team collaboration with computer vision 
techniques. Like any other project, there is room for improvement. The focus was to understand 
collaboration on co-located situations, and shared gaze features were identified during the post-analysis 
process. There was a subset of collected data; since the main objective of this paper was to first understand 
the dyadic interactions of students, we excluded larger teams. In further planned research, a data set with 
team sizes larger than two would better illustrate our idea and validate our findings. In future work, it will 
be ideal to evaluate the effectiveness of adopting our method to other collaborative learning scenarios. 
Furthermore, we plan to work on multiple computer vision techniques by combining multiple image-based 
features, such as facial expression recognition, emotion recognition and head and body pose estimation, 
along with joint attention estimation to more comprehensively interpret collaboration dynamics. The 
findings from this work have implications in educational technology and collaborative computing by 
offering a novel assessment tool for team collaborations based on gaze information.  
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