

Australian Journal of
Educational Technology

2002, 18(1), 89-109

Constructivist approaches to authoring

John G Hedberg and Barry M Harper
University of Wollongong

This paper discusses the thinking behind MediaPlant, an authoring tool
which has been designed to embody several constructivist ideas in its
development. It begins with some comparisons with some commonly
employed tools and suggests that how the tools are designed to be used
poses limitations upon the learning tasks which are designed. The chapter
concludes with some examples of how the tools have been used and the
types of products that have resulted from its use.

Development of educational software has had a long history of use of
authoring environments that have enabled instructional designers, rather
than programmers, to design and develop applications. The advantage of
these tools has been that the designer did not need to be highly skilled in
high level languages, but could use a simpler construction set of pre-
programmed modules, often supported by a simple scripting language.
The disadvantage was that the developer was limited to the pre-
programmed modules available and to the underlying assumptions of the
structured instructional design models adopted by the tool. The designer
also had to work within the visual and procedural structures employed by
the tool designers to represent the design process within which learning
activities could be constructed.

However, the move toward pre-programmed modules, based on specific
pedagogies, has not been universally viewed as a disadvantage. Designers
have also taken the view that users of such tools may not have instructional
design skills, and the more constraining the tools is toward particular
instructional strategies, the more likely that users with limited
understanding of learning will build pedagogically sound experiences for
learners.

Multiple conceptualisations of authoring tools

Additionally, authoring tools have been modified or designed specifically
for learner use. Researchers such as Seymour Papert (1993 p.142, 1980)

90 Australian Journal of Educational Technology, 2002, 18(1)

have long called for more open environments based on a theoretical view
of learning he termed constructionism. Constructionism is based on two
different senses of ‘construction’. It is grounded in the idea that people
learn by actively constructing new knowledge as well as asserting that
people learn with particular effectiveness when they are engaged in
‘constructing’ personally meaningful artifacts in the context of resource
rich ‘virtual worlds’ containing embedded tasks, designed for, or as a result
of, open ended construction by learners.

Interactive learning environments, if well designed, can support learner
construction of knowledge through problem solving experiences or
through more creative expression. Such frameworks are based upon
arguments that learners should be placed in authentic environments that
incorporate sophisticated representations of context through such
constructs as “virtual worlds”. The assumption is that within these
environments, the learner is supported by visual metaphors which are
specially constructed to represent the information structure to which they
have access and how the “world” operates. Within these learning
environments, students are often given a rich set of resources to construct
artifacts, which represent their solutions to problems and tasks that they
undertake within the world. Designers construct these environments
assuming the resource base includes the data needed to resolve the
problem posed and the operation of the “world” supports appropriate
propositions and argumentation for each solution. However the transfer of
skills and learning from the ‘virtual world’ to the real world is not always
well supported, especially when the learning environment is limited and
constrained to reduce the difficulties of representation or functionality.
This latter approach is true of environments which are based on the
building of discrete elements and linking them together, rather than
creating a more holistic task which has the core elements of the task to
which the learner must transfer.

To simplify terminology amongst authoring environments, in this paper
we will refer to the authoring application as a “tool” and the resources,
which are collected together for display as a “project”. Several authoring
tools can construct standalone "projects" (for example, Director creates a
“projector”) which can be distributed to learners individually. Some tools
also focus upon record keeping aspects of the system and create student
files that are the student’s responses to the embedded questions. Some
tools work directly with the visual display, such as Multimedia Builder and
Hyperstudio, all changes and design decisions are represented as visual
changes to the display. Other tools provide a more comprehensive view of
the multimedia objects, for example, iShell shows the details of each object

Hedberg and Harper 91

in terms of attributes and actions employed, as well as a runtime display
window.

Visual metaphors in practice

When comparing key features of authoring tools, various authors have
proposed classification mechanisms. In particular, Murray (1999) in his
analysis of authoring tools at that time argued strongly that tools fell into
two broad categories; pedagogy oriented and performance oriented. The
problem with this categorisation is that it ignores the conceptual
structuring and understanding of the tool that the user must adopt and feel
comfortable with, before even beginning to think about how a particular
learning design can be implemented within the structure of the authoring
tool. A more useful construct for determining application of a tool would
be to consider the characteristics of the tools that determine how they
support users when they develop effective learning environments. Table 1
outlines a comparison of four quite different tools in what we contend is a
more useful comparison, considering the key characteristics of metaphor,
media support, built in tools, interactivity and scripting,

No matter what authoring tool is used, software designers have to work
within the prevailing metaphor of the tool. For example, if a designer
employs Director, the prevailing metaphor is a theatrical pageant and

Table 1: A comparison of four tools

 iShell Multimedia
Builder (MMB)

Director HyperStudio

Platform PC and Mac PC only PC and Mac PC and Mac
Metaphor Object oriented Page based, object

oriented.
Score based
with visual
display and
objects with
attached code

Screen based,
card metaphor
and objects
embedded.

Structure An iShell project
contains one or
more documents
(.k files) which
include layout and
object information.

A MMB project
consists of pages
into which objects
are placed.
Supports Master
pages both under
and over current
page.

A director
project
contains all the
elements to
which it refers
except for
QuickTime
movies

All elements are
included in the
one file except
for QuickTime
movies

92 Australian Journal of Educational Technology, 2002, 18(1)

Media
support

Media supported
include rich text
files, and any
graphics, audio or
movie file format
supported by
QuickTime. Also
includes html 2.0
(without forms),
animated gifs,
streaming movies,
movies with
chapter tracks,
flipbook images,
Quick-Time VR.
(Most media
elements are
linked as external
files.)

Media objects
include text,
graphic (bmp, jpg,
gif, pcx, png, tif),
video (avi, mpeg,
mov, videocd)
and animated
gifs. Simple

Most formats
are supported
including
sprites which
can have their
own sets of
behaviors

Media objects
are simple, with
attributes that
can be changed
through dialog
boxes. Most
media formats
supported.

Built in
tools

Simple text field
and box elements.
Support for
tabular formatting
from a .tdl file.
Can add a scroll
bars as separate
element.

Includes simple
text fields,
paragraph text
object (type into
or copy and
paste), text
buttons, image
matrix object,
static and
dynamic effects,
simple shapes and
lines, and
hotspots.

This product is
quite
sophisticated
in terms of the
range of tools
embedded and
the other tools
which can be
used to edited
elements of the
cast if so
desired.

Includes a series
of basic
elements, which
can be viewed in
the context of
each screen. The
product does
provide a meta-
view in terms of
a series of
screens which
can be shuffled
around

Interact-
ivity and
Scripting

Each element has
attributes depend-
ing on their type
(e.g. position, size,
duration etc.)
Events may be att-
ached to elements
triggered by user
or run time actions
(e.g. mouse down,
enter key). Some
events are specific
to particular types
of elements, others
may be contained
in any element.

Each elements has
a set of simple
properties
depending on
their type (label,
color etc.) Actions
may be enabled
(e.g. go to another
page, hide/show
another object). A
script object can
be included in a
page and can
capture keyboard
prompts.
Properties of a

Complete
scripting
language
which can be
used instead of
the attribute
setting which
can also be
undertaken for
simple projects

Objects can have
their attributes
set through
dialog boxes.
Limited
scripting in a
language based
on Logo

Hedberg and Harper 93

Commands act on
elements (e.g. the
drag command
changes the
position of an
element). The
project file
contains overall
settings (e.g.
screen size etc.)

page include
background
image and music.
Project menu
allows general
settings to be
configured (e.g.
window size,
palette etc.).

Scripting
required
for basic
production
- adding
media,
layout and
simple
navigation

Moderate.
Understanding of
commonly used
events is needed.

Easy to use
without scripting.

Drag and drop
of construction
and the score
does enable
the project to
be displayed
using the time
dimension as
the basic
layout.

Basically you
assign attributes
to the elements
within the
project. Simple
navigation based
on the screen
metaphor is
easily placed on
each screen
(card).

Comments Quite different to
other authoring
tools and terms
used are uncon-
ventional. This
means that the
functionality is not
intuitive even for
those familiar with
other authoring
tools. The interface
is more complicat-
ed than other tools
with multiple pal-
ettes. Seems easy
for novices to start
using the tutorials
and then difficult
for most to go fur-
ther on their own.
Readily extended
to larger more
complex projects.
Web site includes
showcase of
sample products.

Interface is simple
and uses familiar
functions
(accessed by
clicking on icons
with pop up
descriptions). Pop
up windows for
each object allow
user to enter and
alter properties
and enable simple
actions. A
scripting
language allows
interactivity to be
extended beyond
these simple
functions.

This product
rapidly
becomes quite
complex if
sophisticated
behaviors are
to be included.
The number
and variety of
windows
which are used
to create a
project
requires two
monitors for
effective
authoring

The product is
extensively used
in the K-12
arena. The
simple interface
allows young
children to
develop
presentations
including a wide
variety of media.
The product is
not used to
construct
commercial
product because
of the speed of
implementation
and the lack of a
runtime tool.

94 Australian Journal of Educational Technology, 2002, 18(1)

is conceived as a time dependent display. Events occur on a stage and are
managed by a score, which dictates the depth and movement of each object
over time. By contrast, HyperStudio employs a card metaphor where links
between discrete representations of objects are embedded in a Hypertext
relationship. Authorware (which is not now in common use) created a
complex flow chart (algorithmic) structure, which was used to design the
experience, but was not displayed to the learner. Most implementations
required learners to work through the pre-determined paths very
reminiscent of the traditional concepts embodied in programmed
instruction.

From these brief examples it is clear that the visual metaphor will create a
vehicle in which the instructional designer must work and conceive their
project. It follows that there will be a symbiotic relationship between the
instructional strategies and the way the tool enables the designer to think
about the task. Of the many common tools, the older have taken a more
structured approach borne out of behavioral learning theory. The more
recent tools have striven to reduce the need for time or procedural
structure to create an environment of intelligent objects. To represent this
process the tool authors have created different ways of changing and
visualising the relationship between creation of a learning environment
and using these environments. Thus options that will enable time,
hierarchical and spatial display are all possibly needed by designers as the
learning tasks and project demand.

While most of these tools have become more complex over the past few
years, with a corresponding increasing in the strength of the project which
can be undertaken with them, there has also been a trend to the production
of small single purpose tools that can be useful for small tasks. For
example, it is possible to organise resources using the Mac only tool called
iView Multimedia which the authors claim can:

• Instantly find on any of your disks and CDs that special photo, movie,
sound, clip art, image, font, that you need for a project.

• Organise your media files into catalogs containing previews and
information that can be viewed even when the original files are no
longer on a mounted drive.

• Present your media as a continuous audio/visual slide show.
• Re-use your media with your preferred application, or use iView's own

set of tools. You can easily print reports and export your media as
QuickTime™ movies, HTML galleries and more.

• Use your catalogs as media palettes side-by-side with your favorite
application. iView Multimedia supports Drag & Drop integration with
the finder and any drag & drop savvy application.

Hedberg and Harper 95

• Examine and edit your media annotations, including caption, keywords,
categories, digital camera photographic information and much more.

• Import media straight from the Web, and connect back to the URL with
your favorite browser. (iView User Manual, 1999, p3)

Developing a new authoring environment

The designers of an authoring environment must make assumptions about
the instructional design models that the tool will support and the potential
end users. Some tools are designed for developers and others for learners
to construct their own ideas. Several key writers have called for a
reassessment of instructional design models used for the development of
technology supported learning environments that assume constructivist
views of learning. Hannafin and Land (1997) have suggested that we
should be aiming for open ended learning environments, Jonassen and
Tessmer (1996-1997) argued that we should be aiming at new learning
outcomes, and Duffy and Cunningham (1996) have described a range of
metaphors which structure how we teach. Additionally, Savery & Duffy
(1996) have elucidated several principles that characterise this
philosophical view in technology based learning environments.

Supporters of constructivist learning theories (Jonassen and Reeves, 1996)
have criticised authoring tools that have some pedagogical support or
constrain the designer for a particular pedagogy, such as intelligent
tutoring systems. They argue that such systems are based on instructivist
models of learning. However, Murray (1996) has proposed that such
systems do acknowledge concepts such as intrinsic motivation, context
realism and social learning contexts, but the authors who argue for
pedagogical support in tools see them as ‘not important, or as being too
complex or incompletely understood to incorporate into instructional
systems’. However, not only is it important, but examples of these
environments have been developed based on the constructivist design
principles and have been proven to be effective learning environments,
especially when the problems that are posed are ill-structured and require
more than simple factual responses. Moreover, they require the collection
of evidence and a case being made for the proposed solution (see for
example, Jonassen 1997; Hedberg et al, 1998; Herrington et al, 1999).

Jonassen and Tessmer (1996-1997) have also questioned the commonly
used taxonomies of learning that are the basis of our instructional design
models, proposing that engagement with a greater range of learning
outcomes is essential for meaningful learning. They have suggested a new

96 Australian Journal of Educational Technology, 2002, 18(1)

framework for specifying the types of learning outcomes that modern
learning environments should be developing.

Given the changes to hardware technology options, we wanted to provide
design frameworks and visual metaphors that could be employed by
highly skilled designers to use the tool for project creation. We also wanted
a tool that could support young learners, with access to rich resources, to
construct representations of their own ideas using such a tool. In response
to these design suggestions and the changes that have occurred in
hardware technology options, we have proposed a design model (Figure 1)
that is cognisant of constructivist approaches to instructional processes,
and addresses many of the above suggestions for reassessment of
instructional design models (Hedberg et al, 1994).

Phase one of the model takes the basic information derived from an
assessment of needs, and describes the parameters of the Project space.
This is the information which is to be included in the materials, how it is
structured, what the target audience understands about the information
and how it might be structured for the audience. A possible structuring
device might be a concept map of the ideas and links that are to be
included in the project. Whatever the device used, the key idea at this stage
is to begin a holistic structuring of the information and how it is going to be
manipulated, that will eventually form the basis of an organising visual
metaphor.

The second phase reviews the basic description and seeks to combine the
structure and access to all the component elements through an appropriate
instructional or interaction strategy. It also seeks to identify metaphors
which help both the design team and the final presentation of the
information structure. The outcome of the second phase would be a formal
description such as a design brief. The detail would enable the reader to
understand the underlying knowledge structures and the ways it is
proposed to link them conceptually and intuitively. The key to this process
is the reversal of access to the information. By this we mean in traditional
designs we analyse the elements and sequence them into a presentation
sequence. In this model we are trying to provide access to the data in a
legitimate form, in the same way as the individual user would have access
to and manipulation of the resources in the real world (see the arguments
by Lave & Wenger, 1991). Thus the visual metaphor and structure must
provide for information rich presentations, but ones that are extensible and

Hedberg and Harper 97

possibly able to be unfolded as the learner needs less support and
scaffolding in undertaking the tasks.

The third phase can be considered a third pass at the same material, this
time with the express goal of linking the design ideas into a potential
presentation structure. One output of this phase would be an interactive
mock up of the resources using an authoring tool to illustrate not only
static display of information but also the graphical and visual metaphors
used to create understandable links. The information included in this
prototype may include motion and static graphics, sound and data
landscapes, as appropriate to the concept under development.

2

Screens—nodes and links

Visual representations
of project space

Needs Users

Tasks

Review

Summary of all information
needs and requirements

Initial Design Brief

Complete Design Brief

Phase 3: Interface
and Presentation
Design

Phase 2: Interaction Design

Phase 1: Information
Design & Project Space
Definition

User/Designer

43
1

Outputs include screen designs
integrated knowledge and
instructional strategies, user
interface prescriptions and
scenarios for users to interact
with the proposed materials and
learning tasks

Description in terms of users
current knowledge and expected
outcomes, the needs of the project
in terms of learner performance, a
knowledge analysis in terms of the
task and information structure

Description of the design
metaphors employed, cognitive
processes and feedback links
proposed, initial navigational
links, performance outcomes and
interactivity requirements

Review

Review

Figure 1: The design process used as the basis for interactive
multimedia project development (Hedberg et al, 1994).

98 Australian Journal of Educational Technology, 2002, 18(1)

Implications for a software environment

The key implications for an authoring environment to support the design
model would be that the environment includes:

• facilities for rapid prototyping of design ideas and restructuring of ideas

simply and efficiently through a range of flexible interfaces.
• design elements that can be added through either menu selection, drag

and drop, or copy and paste facilities.
• design elements that can be edited, re-used, and re-purposed simply

and efficiently through a WYSIWYG interface.
• a visual representation of the presentation of the learning strategy

options available at all times.
• global highlighting of an object and all of its occurrences in other views

of the project (in all design and runtime views).
• extensibility so that new features can be added when necessary through

extensions to the authoring tool and bridges to high level languages.
• networkability so that alternate storage options for graphic, video and

audio resources can be used (for example, data files can be made
available on CD-ROMs, hard disks, fileservers, or distributed across all
three. Media elements such as pictures and text can be either stored
internally or as external files, and in the future, it should be possible to
use media and files stored on the Internet.)

In addition to these attributes for an authoring tool, the choice of an
appropriate visual representation or metaphor will be critical for
supporting a range of authoring tool users. This visual metaphor will either
support the development of easily learned skills to enable users to express
their ideas in multimedia forms, or, if unsuccessful will require users to
'learn' how the tool can be used to create projects. This second requirement
is typical of most tools currently available. Key to any authoring
environment is the way it sets up interactions and supports their simple
execution by the tool user.

As we considered the issues we have raised for developing an authoring
tool and the attributes that flow from these issues, in developing
MediaPlant, we have struggled with questions such as:

• What visual support structures are required to create a learning

environment? Is realism enough to make it an authentic context or is
there some other way of interacting with the objects so that the task

Hedberg and Harper 99

of manipulation is simple? When would a 3D view be required, how
should a navigable space be represented and displayed?

• Under a constructivist framework how should the user/learner create
the interaction, rather than the learner having the interaction devised
for them?

• What useful 'views' are there for project construction? Does it differ for
learners, professional designers, or programmers?

• What general support functions should be available in an authoring
tool? What cognitive support structures are necessary for learners? (For
instance, Ferry et al, 1997 have demonstrated the importance of using
cognitive mapping tools to generate understanding of complex
knowledge domains.)

• What organisation and support structures (annotation devices, media
specific views) are needed to assist in the development of projects that
have potentially thousands of items to track and integrate? Should a
level of customisation be available to the project developer so they can
'tailor' the visual organisation of their work to a world more in tune
with the content and interactions they are developing?

MediaPlant as an authoring environment

With the framework of our design model and the questions we have raised,
the Interactive Multimedia Learning Laboratory team set out to develop a
software development environment. It was envisaged that this
development environment, MediaPlant, would facilitate the production of
complex cross platform learning environments for commonly available
configurations, i.e. this would be an authoring tool that offered complete
flexibility in the design process and also high level performance on entry
level machines.

The authoring environment consists of a development tool and a runtime
or 'player' program. The development program is used to construct and
test the project, which is then distributed with the runtime program. The
development and runtime applications enable project construction on both
the Macintosh and Wintel compatible platforms, and the project files can be
shared across both operating systems. The software environment is based
on a C++ application framework tailored for large scale multimedia
development.

The visual representation of the tool consists of a design window which
functions as a 'drag and drop' construction space with additional views

100 Australian Journal of Educational Technology, 2002, 18(1)

that include a media window, a tools window and attribute windows for
individual screen objects. A meta-view of the initial development program
is based upon a tree file structure. This is being extended to present visual
representations of the design by flowchart and Hypertext visual
organisation.

Figure 2: Tree file visual
structure used in MediaPlant
for the authoring process in
123 Counting with me

Hedberg and Harper 101

Figure 3: The classroom metaphor and the Design window
which is the result of the meta-structure of Figure 2

The file structure metaphor (Figure 2) provides a similar interface to the
Macintosh Finder or the Wintel directory hierarchy, allowing easy access to
all of the media, screens, screen objects and scripts within a project. By
using aliases, files may be accessed wherever they may reside over a
network and they may be moved without the link being broken. Projects
are constructed using drag and drop, as well as copy and paste, which
makes adding, editing and reorganisation of elements within a project
simple. A designer has considerable freedom in how media are organised,
including a choice between using external files, or storing media within
MediaPlant's containers. Runtime screens can be displayed whenever
desired, allowing easy graphical editing of items on each screen, as well as
execution and testing of the product.

The object oriented nature of the design metaphor offers considerable
extensibility for the authoring environment. Cognitive tools for learners,
such as note pads, help windows, simulations, etc, once developed, can be
simply dragged between projects, allowing designers to re-use

102 Australian Journal of Educational Technology, 2002, 18(1)

programmable objects that support learners in their exploration of
information and construction of knowledge.

Example: 123 Count with me

In exploring the application of the authoring tool, MediaPlant, to a specific
project, an interactive multimedia development team used the tool to
develop a CD-ROM project, 123 Count with me. The design team had
experience in developing multimedia products using simpler authoring
tools and adopted the design process outlined in Figure 1.

The resulting package, 123 Counting with me, provides a dense information
landscape of resources based on general issues in professional
development for elementary school teachers implementing a new
curriculum in mathematics.

The information landscape uses spatial metaphors: a Classroom (Figure 3)
and a navigable panorama. On entry to the environment, users are led to
the main points of the package, these are presented as a programmed set of
links and the palette window remains after the initial 15-second
description. The package design has “learned” from previous products
(Wright, et al, 1998) in that the amount of exploration is limited to enable
the user to focus on the structure and organisation of the information
within the package. The original metaphor was an approach to laying out a
number of linked but non-sequential topics. Until it was user tested, the
power of the metaphor was not really understood. After use testing, it was
decided to build further on the initial “graphical design” so that the
metaphor was also a way of modelling the content of the package. The
visual design itself moved from a pleasant graphic into a visual model of
the professional practice that is the underlying purpose of the whole
project. The users are expected to employ certain characteristics in their
approaches to the teaching of early mathematics (K-2). Organisation of
students in the class and displays of ideas on the furniture and walls all
serve to model the techniques for how it should be undertaken. Thus the
actual structure of the package, a 360-degree panorama with a series of
overlay information screens, serves to situate the task and have the
information spatially related to the object within the worldview. The use of
the tool with customisable windows has also enabled the media to be
displayed within the context of the information display. Figure 4 shows not
only a video screen with the controller but also a summary text that can be
linked to each explanation. The other aspect of this screen demonstrates

Hedberg and Harper 103

a list structure which allows information to be “chunked” and presented in
small screen readable sequences, obviating the need for large amounts of
printed materials.

The structure of the tools enables a learning structure to be simply copied
and pasted. The graphics, movies, etc, which have to be uniquely displayed
in each section can be activated simply by a change of attributes to the
window display. For example, changing a movie to display within the
same graphical artwork is simply a matter of changing the file name. Thus
all media are collected in major components of the project. In the case of
this example all the movies are stored in the same folder on the CD-ROM,
the data is stored outside the application in a container. Provision is made
to have a major project broken into several containers with data for each
section in its own container. This aspect has the additional advantage of
enabling multiple authors to work on each section and the final project is
completed by linking each container together.

Figure 4: Video screen for 123 Count with me

104 Australian Journal of Educational Technology, 2002, 18(1)

Example: Creating a palette for data collection in Exploring the
Nardoo

In many projects there is a need for the student to collect and reflect on the
resources within the project. The purpose of the task is to engage students
in using the skills of problem solving, measuring, collating, elaborating and
communicating. In one package using MediaPlant, students aged from 14 to
18 years were given opportunities for to practise investigative, analytical
and communicative skills. Exploring the Nardoo (1996) provided support for
the study of interactions between living organisms and the physical and
chemical environment in which they occur. The package employed an
information landscape with spatial and geographic metaphors: a Water
Research Center and a navigable, fictitious river environment. On entry to
the environment, users are challenged to solve problems and carry out
investigations on the river. The challenge encourages active learning and
requires students to construct their ideas from measurements taken,
resources reviewed, maps interpreted and data analysed.

The investigations of problems include issues such as fish dying from
pollution, weeds infesting the river, and communities discussing farming
practice. To investigate such issues, students access resources and data that
are both embedded in the river environments in situ, through hot buttons,
and also in the Water Research Center through organising interface
metaphors such as reference books and newspaper clippings. Supportive
tools include a Personal Digital Assistant (PDA) (Figure 5) designed for
editing and elaborating the notes and data collected. The PDA contains a
multimedia notebook for collection of any of the resources in the package,
including video, audio, graphics and text; a viewer for viewing the video
and graphic resources; a set of measuring tools to take measurements on
the river, user support through a help file; and navigation tools.

In this second example, the authoring tool provides a re-usable and
common element within the project which can be shared with other
projects. In its original conception the tool enabled the display of data and
visual materials such as video clips, as the user wished to collect them
within the learning environment. In current work we are trying to extend
the tools to enable the collection of resources in whatever form to become
part of the set of resources that the learner can employ and reflect upon
when they seek solutions to learning tasks. Through such examples it can
be seen that interactivity and collection of ideas is encouraged and

Hedberg and Harper 105

the student will be able to use arguments which are not simply based on
textual evidence. Through this type of tool within the authoring system, it
should be possible to extend the forms of argument and the way evidence
is provided to support each argument.

Figure 5: The Personal Digital Assistant (PDA)

106 Australian Journal of Educational Technology, 2002, 18(1)

Designers constructing with MediaPlant

When asked a series of questions about the congruence between the visual
representation and how the tools work, two designers made the following
comments.

1. Did the visual metaphor i.e. the visual representation of the meta-view

(file structure, folders, etc) and the design view (window as it will look
in the final product) constrain or support your thinking about how to
use MediaPlant?

Certainly supports my thinking. The structure of containers and folders
chunks the functionality of the package and thus has made it easier for
me to understand and conceptualise how the functionality for 123 CWM
works. For example, the container “MainsScreen” provides the “engine”,
of the package, which calls upon other folders (that contain the code) to
run parts of the package. For example, the panorama functionality
resides in the “Mainscreen” container. When a user clicks on a functional
part of the panorama the code calls another folder (outside the
MainScreen container) to execute. Thus, code is chunked and is easy to
find (that is, if the folders have been named appropriately).

2. How well does the structure of MediaPlant, i.e. using the design and

meta-views and storing all media except QuickTime internally help in
the construction process?

It helps in the construction process because you can immediately see the
consequences of your actions. I.e., you can add something in the file
structure and immediately test it to see if it works. It’s very logical in its
approach. However, access to some help tools such as “how to get
started”, access to the library of scripts, and possible examples of sample
code may assist the user.

3. What built in tools need to be provided within MediaPlant to assist with

the construction process?

An index/library of all MediaPlant scripts, e.g., OnMouseUp,
OnToggleDown, etc.
A list of short cut keys.
Picture icons that are more representative of what they are representing,
e.g., currently a picture object is represented with an icon that has a
graphic of a pencil.
Help on how to insert external media, e.g., movies.

How to insert a movie:
i. Insert Movie into the Movie file (outside MediaPlant)
ii. Create a container - (duplicate an existing movie container)
iii. Change path name in the container - for SetMovie command. (Copy

pathname of movie form movie folder within MediaPlant and paste)

Hedberg and Harper 107

iv. To insert Movie Icon in text pane - click on Container - Copy
(apple C), then position cursor in text pane and paste (apple V)

4. How does the design of MediaPlant make you think about what

interactivity is possible and was the scripting language adequate to
implement the design of interactions?

It seems that MediaPlant offers such flexibility that anything seems
possible.

5. How would you describe the scripting required for basic production

(adding media, layout and simple navigation) - is it simple enough and
fast enough to construct this level of product? What needs to be added
or modified?

A comment I have is the current version is rather complex and does not
lend itself easily as a prototyping tool. I also found inserting things like
movies to be a very time consuming process. Perhaps if there were some
high level scripts/tools like “Insert a movie” and a window appears
asking the user to find the movie and enter a title of the movie, etc, that
may be helpful. Also, if there were some graphic window templates i.e.:
choice of floater windows – that may also be helpful.

Overall, while we have tried to create a very flexible tool, from the above
comments it is obvious that the tool has still some distance to go in
designing improved levels of support for instructional designers trying for
their own construction. Hopefully, the first real test will be of the tool with
a front end designed for school students, providing access to setting
attributes, but not to the “programmable elements” mentioned in this
report.

Conclusion

As new theoretical views about technology supported learning
environments develop, we need to be able to explore these ideas using
tools that allow us to set up these environments quickly and easily. Tools
that assist the task, without complex dialogues for handling variables and
options. We also need to review the visual and conceptual functioning of
tools that we offer, both to designers to support their efforts in designing
high quality software products, and to our users as they express their ideas
using the full range of media available to them. In the light of changing
approaches, it is an opportune time to review our current authoring tools,
to suggest options that derive from educational issues, and to address some
of the questions raised in this article.

MediaPlant is a powerful new authoring tool based on a constructivist
framework that may be able to help us achieve these goals. It provides an

108 Australian Journal of Educational Technology, 2002, 18(1)

environment in which ideas can be extended; new options and constructs
can be created, augmented and shared by other users/designers. When
linked with our understanding about how users work with the more
complex environment of computer based knowledge construction, it also
provides supportive components. MediaPlant allows designers to develop
pedagogical tools as objects which can then be used in other projects. We
hope that we have begun to break away from the constraints of earlier tools
that provided one or two ways of representing the underlying ideas of the
designer. In this new environment the user can choose the way they wish
to view their project. We believe that the form that makes ‘sense’ is in terms
of the data rather than in terms of what the programmers of the authoring
tool chose.

Acknowledgments

We wish to acknowledge the contribution to these ideas by the team who
developed MediaPlant, our senior programmer Grant Farr, instructional
designer Rob Wright and visual designer Karl Mutimer. A number of
designers who have used the tool also for construction have provided their
comments, in particular Shirley Agostinho and Ian Brown.

References

Duffy, T. M. & Cunningham, D. J. (1996). Constructivism: Implications for the

design and delivery of instruction. In D. H. Jonassen (Ed), Handbook of Research
for Educational Communications and Technology, NY: Macmillan Library Reference
USA. pp. 170-198.

Exploring the Nardoo (1996). Canberra: Interactive Multimedia, Project Manager
Barry Harper, Instructional Design Barry Harper, John Hedberg, Rob Wright,
Grant Farr and Christine Brown (A CD-ROM based interactive multimedia
package produced with the NSW Dept of Land and Water Conservation).

Ferry, B., Hedberg, J. G. & Harper, B. M. (1997). Using concept mapping to help
pre-service teachers map subject matter knowledge. Paper presented to the
Australian Association for Research in Education 1997 Annual Conference,
Brisbane, 30 Nov-4 Dec.

Hannafin, M. J. & Land, S. M. (1997). The foundations and assumptions of
technology-enhanced student-centered learning environments. Instructional
Science, 25, 167-202.

Hedberg, J. G., Harper, B. Lockyer, L., Ferry, B., Brown, C. & Wright, R. (1998).
Supporting learners to solve ill-structured problems. In R. Corderoy (Ed)
Flexibility: The Next Wave. Proceedings of the 15th Annual Conference of the
Australasian Society for Computers in Learning in Tertiary Education, 14-16
December. Wollongong, NSW: University of Wollongong. pp. 317-327.
http://www.ascilite.org.au/conferences/wollongong98/asc98-pdf/hedbery.pdf

Hedberg, J. G., Harper, B. M., Brown, C., & Corderoy, R. (1994). Exploring user
interfaces to improve learner outcomes. In K. Beatie, C. McNaught & S. Wills

Hedberg and Harper 109

(Eds), Interactive Multimedia in University Education: Designing for Change in
Teaching and Learning. Amsterdam: North Holland, Elsevier, pp 15-29.

Herrington, A., Herrington, J., Sparrow, L. & Oliver, R. (1999). Investigating
mathematics education using multimedia. Journal of Technology and Teacher
Education, 7(3), 175-186.

iView Multimedia (1999). User's Manual: Multimedia Asset Management for the
MacOS. (Version 3.6) London: iView Multimedia Limited. [verified 2 May 2002]
http://www.iview-multimedia.com/

Jonassen, D. & Tessmer, M. (1996-1997). An outcomes-based taxonomy for
instructional systems design, evaluation and research. Training Research Journal,
2, 11-46.

Jonassen, D. H. (1997). Instructional design models for well-structured and ill-
structured problem-solving learning outcomes. Educational Technology Research
and Development, 45(1), 65-94.

Jonassen, D. H., & Reeves, T. C. (1996) Learning with technology: Using computers
as cognitive tools. In D. H. Jonassen (Ed), Handbook of Research on Educational
Communications and Technology. New York Scholastic Press in collaboration with
the Association for Educational Communications and Technology, Ch. 25.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral practice. New
York: Cambridge University Press.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of
the art. International Journal of Artificial Intelligence in Education, 10, 98-129.

Savery, J. R., & Duffy, T. M. (1996). Problem based learning: An instructional model
and its constructivist framework. In B. G. Wilson (Ed), Constructivist Learning
Environments: Case Studies in Instructional Design. Englewood Cliffs, NJ:
Educational Technology Publications. pp. 135-148.

Wright, R., Harper, B. & Hedberg, J. G. (1999). Visual Support for authoring. In J.
van den Akker, R. Branch, K. Gustafson, N. Nieveen & T. Plomp (Eds), Design
Approaches and Tools for Education and Training, London: Kluwer Academic
Publications. Chapter 17, pp 205-214.

Wright, R., Hedberg, J. G. & Harper, B. (1998). Learner construction of knowledge:
Using StageStruck to develop a performance. In R. Corderoy (Ed), Flexibility: The
Next Wave. Proceedings of the 15th Annual Conference of the Australasian
Society for Computers in Learning in Tertiary Education, 14-16 December.
Wollongong, NSW: University of Wollongong. pp. 673-679. [verified 2 May
2002] http://www.ascilite.org.au/conferences/wollongong98/asc98-
pdf/wrighthedbergharper0165.pdf

John G Hedberg, Professor of Education
Faculty of Education, University of Wollongong
Wollongong NSW 2522, Australia Email: John_Hedberg@uow.edu.au

Barry Harper, Professor of Education
Faculty of Education, University of Wollongong
Wollongong NSW 2522, Australia Email: Barry_Harper@uow.edu.au

