
Australasian Journal of
Educational Technology

2005, 21(1), 40-59

Object oriented learning objects

Ed Morris
RMIT University

We apply the object oriented software engineering (OOSE) design
methodology for software objects (SOs) to learning objects (LOs). OOSE
extends and refines design principles for authoring dynamic reusable LOs.
Our learning object class (LOC) is a template from which individualised LOs
can be dynamically created for, or by, students. The properties of LOCs
refine existing LO definitions and design guidelines.

We adapt SO levels of cohesion to LOCs, and illustrate reusability increases
when LO lessons are built from LOs like maintainable software systems are
built from SOs. We identify facilities required in learning management
systems to support object oriented LO lessons that are less predetermined in
their sequencing of activities for each student. Our OOSE approach to the
design of object oriented LO lessons is independent of, and complementary
to, instructional design theory underlying the LO design process, and
metadata standards adopted by the IEEE for LO packaging. Our approach
produces well structured LOCs with greater reuse potential.

1. Introduction

Our previous research focused on the cost effectiveness (Zuluaga, Morris &
Fernandez, 2002) and educational effectiveness (Morris & Zuluaga, 2003) of
our online learning approach. This involved both online course
development and course delivery phases. We also addressed the
deployment, management and scalability of our online courses over a
network of learning management system servers (Zuluaga & Morris, 2003).

Each of these mixed mode and 100% online courses utilise mostly textual
learning materials, and includes on average four short multimedia
supplements such as Java applets, Flash animations, voice overs and video
clips. We relied more on students interacting with staff during the delivery
of an online course than on building interactivity into the online course
material during its development. We assumed that these early generation
online course materials would soon be replaced as multimedia and
learning management systems matured and standardised. So we were not
so much concerned with upgrading the original materials over the years,

Morris 41

re-purposing them for new educational programs, or re-packaging them
for different media in the future. Nor were we concerned with
standardising the packaging of course materials so that they could be re-
assembled with materials from other institutions.

Here however, we are concerned with the engineering of e-learning
materials for the ‘bilities’: interoperability among different systems
connected by the Internet, accessibility anytime from another location,
reusability by other developers to save time and money, discoverability in
repositories using metadata, extensibility of existing courses due to their
modular construction, affordability due to reduced development costs, and
manageability by allowing easy changes and updates to small chunks
(Computer Education Management Association, 2001).

The concept of ‘learning object’ (LO) is central to these objectives. A range
of definitions of ‘learning object’ or ‘instructional object’ exists (Wiley
2001). One that captures a common theme defines learning objects as
“small but pedagogically complete segments of instructional content that
can be assembled as needed to create larger units of instruction, such as
lessons, modules and courses. Learning objects should be stand alone, and
be built upon a single learning objective, or a single concept” (Hamel &
Ryan-Jones 2002).

Boyle (2002) has proposed LO design principles synthesised from
pedagogy and software engineering. From pedagogy, a LO should have a
single learning objective. From software engineering, a LO should do one
thing and only one thing (strong cohesion), and a LO should have minimal
bindings to other LOs (weak coupling).

We expand the above synthesis in section 2 by applying object oriented
software engineering (OOSE) design methodology to the design of LOs.
We introduce the ‘abstraction’ of a LO to enable a designer to produce a
‘learning object class’ (LOC). A LOC is a template from which similar but
individualised LOs can be created dynamically during a lesson. (OOSE
refers to similar ‘objects’ being ‘instantiated’ (created) from a ‘class’, which
encapsulates their shared attributes and activities.) We introduce
‘inheritance’ so that a designer can evolve a ‘child’ LOC from its ‘parent’
LOC, extending and modifying its attributes and activities as desired. The
instructional designer can use inheritance to reuse LOCs or re-purpose a
lesson by extending and coupling inherently cohesive LOCs. The
instructional designer can use instantiation during a lesson to enable
student interaction to determine the actual sequence of possible events in a
lesson.

In section 3 we illustrate the application of OOSE design methodology to
the design of two LOCs. Broadly speaking, one is for the programming

42 Australasian Journal of Educational Technology, 2005, 21(1)

discipline, and the other is for psychology. The first is based on the Java
programming language while loop LO of Boyle et al (Boyle, 2003). The
second is based on a conflict resolution LO that explains Maddux’s five
styles of conflict resolution (Rathsack, 2001). These two LOCs from
different disciplines demonstrate the general applicability of our approach.

In section 4, we adapt to LOs a scale for grading the cohesion of SOs. We
show how to classify a LOs level of cohesion and explain how each of the
lower levels further reduces LO reusability. This informs the design of LOs,
as we illustrate with the examples from section 3.

Finally, in section 5 we identify facilities required in a learning
management system to support object oriented LO lessons. We point out
that our OOSE approach to the design of LO lessons is independent of, and
complementary to, the instructional design theory underlying the LO
design process, and the metadata standards adopted by the IEEE (LTSC,
2003) for LO packaging.

2. Application of object oriented software engineering to
learning objects

Software engineering is concerned with the design and implementation of
large scale, complex information processing systems that are robust,
maintainable, modularly reusable, scalable, and extensible (Pfleeger, 2001).
These properties overlap the ‘bilities’ required of LOs (section 1). This
observation underlies the application of software engineering design
principles to the design of LOs. Boyle introduced this approach with
reference to coupling and cohesion principles for the design of LOs (Boyle,
2002). We extend this approach by applying object oriented software
engineering (OOSE) design methodology to the design of LOs. OOSE has
evolved into a dominant ‘branch’ in the software engineering ‘tree’.

In section 2.1 we show how LOs can be designed with essentially the same
techniques used to design software objects (SOs). In section 2.2 we explain
how flexible LO lessons can be built from reusable LOs in the same way
that maintainable software systems are built from SOs with well-designed
interfaces. Our application of OOSE to the design of object oriented LO
lessons leads us in section 2.3 to synthesise criteria that define a truly object
oriented LO.

2.1 Software objects and learning objects

Object orientation is an approach to software development that organises
both the problem and the solution as a collection of discrete ‘objects’
(Pfleeger, 2001). Each software object (SO) can be based on a physical or

Morris 43

abstract object in the problem space. In the software system solution, the
software objects (SOs) collaborate to answer a user’s requests.

Problem: simulate an employee – employer relationship. Solution: Consider
an employee SO now; the reader can similarly consider an employer SO later.

In general the nouns in the problem statement identify the SOs and their
attributes. The ‘has-a’ relationship governs a SO and each of its attributes.

An employee SO has at least a name, a social security (tax) number and
regular pay.

Other attributes of a SO can be discovered by asking “if I am an employee,
what should I know?”. For instance the problem could indicate that an
employment history is required.

In general the verbs in the problem statement identify the activities
(behaviours, actions, responsibilities, operations) required of a SO.

An employee SO at the very least works and gets paid; the latter possibly
comprising 2 activities: receivePay and showPay.

Other activities of a SO can be discovered by asking “if I am an employee,
what should I be able to do?”. For instance the problem could indicate that
reportWork is also required.

The state of a SO at any time is given by the values of its attributes, as
determined by the SO’s activities. For instance showPay should show a
higher pay value after receivePay provides a pay rise.

By analogy with a SO, we consider a LO to have attributes and activities to
deliver a single learning objective. Just as the users of a software system
(solution) cause interactions between SOs to solve a problem, the students
of a ‘lesson’ can cause interactions between LOs to achieve the lesson’s
learning outcomes.

Adapting the above example problem / solution, consider the overall
learning objective: understand the employee – employer relationship.
Learning outcomes could include knowing the responsibilities of employees
in an employment hierarchy. An employee LO can be developed in the same
way that an employee SO was developed above. The same attributes and
activities can be identified in the same manner as above.

By comparison with a SO, the activities of a LO provide an explanation, not
a computation. For instance receivePay could explain that pay is in return
for work.

44 Australasian Journal of Educational Technology, 2005, 21(1)

In general, a SO is an instance of a software object class (SOC). Abstraction
enables SOs with shared attributes and activities to be defined as a single
SOC. A SOC acts as a template from which individualised SOs are
instantiated (created), as determined by the user’s interactions with the
software system.

As a user interacts with a software system that simulates the employee –
employer relationship, employees, bob, ted, carol and alice could be
instantiated. Each SO has a distinct name, social security (tax) number and
pay. These SOs could collaborate to perform their work.

Analogously, LOs can be created as customised instances of a learning
object class (LOC). A LOC is not only a container of learning materials for a
single learning objective (attributes), but also a container of operations
defined on the materials (activities) that a student interacts with to attain
the intended learning outcomes.

During a lesson, a student could create employees, bob, ted, carol and alice.
Each LO has at least the distinct attributes identified above. These LOs could
collaborate to explain their work.

In general, a student initiates a lesson by interacting with a ‘driver’ that
instantiates a LO to service the student’s requests. During a LO lesson,
other LOs are likely to be instantiated from one or more LOCs. The student
interacts with these collaborating LOs to attain their desired learning
experience.

Abstraction promotes generality and instantiation provides flexibility and
individuality. We assert that LOs can benefit from these qualities, just as
SOs do.

The Unified Modelling Language (UML) is a standard for depicting
diagrammatically relationships between classes (SOCs), via class diagrams,
and between objects (SOs), via object diagrams (Priestley, 1996). Figure 1
shows the Employee SOC in UML and four (4) instance Employee SOs.

Figure 1 could equally show the Employee LOC in UML and four (4)
instance Employee LOs.

Access to the attributes and activities encapsulated by a SO is determined
by its SOC. In general, attributes of one SO cannot be directly manipulated
by another SO. Instead, the SO encapsulating the attribute in question
performs the relevant activity in response to a request from another SO.
For instance, an employee SO’s pay cannot be directly accessed by other
SOs; they can only request an employee SO to showPay or receivePay. Not
all activities of a SO need be accessible to other SOs. The public activities

Morris 45

Figure 1: Class Employee and 4 instance objects

supplied by a SOC define an interface that protects the private attributes
and activities of its SOs. In effect, SOs request each others’ ‘services’ via the
public interface activities supplied by their SOCs. This allows the internals
of a SOC to be modified by a programmer without affecting collaborating
SOs, provided its interface remains unchanged, eg. receivePay could
incorporate a bonus without upsetting any SO that requests showPay.

Encapsulation can be equally applied to LOCs. We assert encapsulation
enhances manageability by facilitating updates without requiring changes
to collaborating LOCs. Other ‘bilities’ (section 1) such as reusability and
affordability also benefit.

A SOC can be extended into a more specialised SOC by adding further
attributes and activities. The ‘child’ SOC is said to inherit the parent’s
attributes and activities. The ‘is-a’ relationship governs a child as a
specialised extension of its parent. The child can selectively modify its
inherited characteristics too (called polymorphism). For example an
Employee SOC could define employment history in terms of career
achievements. A junior employee could re-implement its history in terms
of final school courses and grades. Inheritance enhances reusability and
adaptability of SOCs.

An Employee SOC can be extended to an AirlineEmployee SOC on the one
hand, and a HospitalEmployee SOC on the other hand. An AirlineEmployee
could add to its inheritance a knowledge of the travelIndustry and
airlinePolicies. A HospitalEmployee could add to its inheritance a knowledge of
healthCareIssues and hospitalPolicies. A Nurse SOC could further extend the
HospitalEmployee with knowledge of patientCare and the activities to
takeBloodPressure and giveInjection.

46 Australasian Journal of Educational Technology, 2005, 21(1)

Figure 2 depicts the above inheritance hierarchy in a UML class diagram.

Figure 2: Class Employee and its ‘child’ classes

Figure 2 could equally depict an Employee LOC inheritance hierarchy in a
UML class diagram. We assert that inheritance can enhance reusability and
extensibility of LOCs.

2.2 Software systems and learning object lessons

Software systems can be large and complex. Their design can comprise
hundreds of SOCs and thousands of interactions of many kinds. Their
implementation can amount to millions of lines of code. The software
development life cycle (comprising requirements elicitation, analysis,
specification, design, implementation, testing and maintenance) can
involve numerous teams of professionals of various kinds over many
human years. On the other hand, most LOs are designed and implemented
by one or two individuals, or a small team, over weeks or months, rather
than years. No more than a handful of LOs comprise a typical lesson. So

Morris 47

there is at least an order of magnitude difference in the current scale of
software systems design and LO lesson design. However, software systems
were originally far smaller. As the underlying hardware improved
exponentially, it was still the advent of software engineering design
methodologies that facilitated production of larger scale reliable software
(Pleeger, 2001). Hopefully, this paper is a contribution toward a LO lesson
design methodology that will facilitate the design and implementation of
larger scale lessons, courses and educational programs.

An interface in OOSE terms is the boundary around an object that defines
which of its attributes and activities are accessible to other objects. An
object’s attributes remain private by default, but a public ‘accessor’ activity
can be defined in an object to return an attribute to any other object that
requests it. An object may also define a public ‘mutator’ activity to enable
an attribute to be altered at the request of other objects. Each interaction
between two objects is in the form of a request and an answer. Data can be
transferred in both directions – in and out. Such interactions in software
systems are generally driven by the user(s). In general objects are
dynamically created to provide services in response to user requests.

This SO interaction model is also entirely applicable to a LO lesson. An
instructional designer can define the interface of a LOC to provide certain
learning activities as services. During a lesson, LOs instantiated from
several LOCs can interact to provide a user (student) responsive learning
experience.

The Java language also provides a special interface type that can be used to
group a number of classes by insisting each class implements all activities
specified by the interface. The grouped classes can be considered to have
the same ‘look and feel’. We think the Java interface type suggests a
mechanism for combining LOCs into LO lessons. If a LOC, L, implements
interface I along with other LOCs, all these LOCs share a single look and
feel. So a user (student) should experience an interactively integrated
lesson. If the LOC, L, also implements another interface, say J, then L can
integrate with other LOCs that implement interface J. This facilitates reuse
of LOC L in a new LO lesson. Multiple interface types can provide different
contexts for the one LOC (and its LOs) in different LO lessons. This should
aid the ‘bilities’ listed in section 1, in particular, reusability and
extensibility.

2.3 Object oriented learning object criteria

Our above application of OOSE design methodology to the design of LOCs
and LO lessons leads us to synthesise the criteria that define a truly object
oriented LOC. Our criteria (below) refine the LO definition work of Wiley

48 Australasian Journal of Educational Technology, 2005, 21(1)

and others (Wiley, 2001), and extend LO design guidelines (Hamel, Ryan-
Jones, 2002).

1. Each LOC has attributes and activities that meet a single well-defined
learning objective and implement measurable learning outcomes in
accordance with an instructional theory.

2. Each LOC and its attributes are identified by the nouns in its learning
objective and learning outcomes. The verbs identify its activities.

3. Each LOC encapsulates learning activities that are standalone and
achievable in a single sitting.

4. Each LOC’s attributes and activities contribute packaging metadata
(LTSC, 2003), to enhance the ‘bilities’ listed in section 1 (also see section
4.2).

5. Each LOC in general extends (specialises) its parent LOC’s attributes
and activities. Inheritance enhances the ‘bilities’.

6. Each LOC in general implements a Java-like interface type, which can
also be implemented by other LOCs. A single interface for multiple
LOCs provides the ‘look and feel’ for a LO lesson. Implementing
multiple interfaces enables a LOC to integrate into a different LO lesson
with other LOCs. LOC interfaces enhance the ‘bilities’.

Each LO lesson involves student interaction to create LOs on demand and
to drive interactions between these LOs to achieve the lesson’s learning
outcomes. The overall learning activity is necessarily interactive and in
general involves (self-)assessment against the learning objectives.

3. Example learning object classes

Below we illustrate our above adaptation of OOSE design methodology to
the design of LOCs. The first example is based on the LO developed by
Boyle et al (Boyle, 2003) for students to learn how while loops work in the
Java programming language. The second example is based on a conflict
resolution LO that explains Maddux’s five styles of conflict resolution
(Rathsack, 2001). We assert that our two LOCs for different disciplines
(programming and psychology) demonstrate the general applicability of
our OOSE approach to the design of LOCs. Although we write each LOC
in Java, the design is our focus, and is language independent. In section 4.3
we demonstrate the advantages of our design over the originals, as
measured by the design principles of coupling and cohesion (elaborated in
sections 4.1 and 4.2).

3.1 While loop

The Java programming language while-loop LO of Boyle et al (Boyle, 2003)
starts by showing the student how a program hammers a nail into wood:
while (nail is not flush) hit the nail. Next, the Java code to move a car over a

Morris 49

given distance is displayed, explained, and the student can animate the
loop. The student can also step through the code, statement by statement.
A second example shows a submarine submerging to a given depth. The
code is displayed, explained, animated, and the student can step through.
Then the student is asked to build the code from a given set of Java
statements to move a horse a given distance. Finally, the student is asked to
spot errors in the code to move a lorry a given distance.

Our OOSE design for a while-loop LOC is shown below (Figure 3) as an
incomplete class in Java. Class While has one attribute – the loop in
question, represented as a string of characters. When an object of class
While is instantiated, the loop can be initialised to an input string, or the
default generic loop. Class While defines the following activities as
operations on this loop – display, explain, animate, step_thru, build, and
debug.

Figure 3: Class While

The student interacts with a Java program that instantiates requisite While
objects. For example, if the student follows the sequence intended in
Boyle’s LO, the hammer object would be instantiated first. Its code would
be displayed, explained and animated. Next, the submarine object would
be instantiated, its code displayed, explained, animated and stepped
through if desired. Next, the horse object would be instantiated, and the
student would build its code. Finally, the lorry object would be
instantiated, and the student would debug its code.

50 Australasian Journal of Educational Technology, 2005, 21(1)

Note that another student, perhaps more advanced, could interact with
Class While to instantiate While objects (LOs) in another sequence,
bypassing some LOs as desired.

3.2 Conflict resolution

Rathsack’s conflict resolution LO explains Maddux’s five styles for
managing conflict. The LO begins by stating that people can disagree, that
this can be an opportunity for growth and learning, or it can be detrimental
as conflict arises. The ability to manage conflict is important to succeed in
one’s career and life. The LO then introduces Maddux’s matrix depicting 5
styles for managing conflict: avoiding, accommodating, winning/losing,
collaborating and compromising. Each style is explained. Then the LO
explains that the matrix y-dimension shows increasing assertiveness and
the x-dimension shows increasing cooperation, starting from zero at
bottom left. This explains the location of each style in the matrix:
winning/losing at top left, collaborating at top right, accommodating at
bottom right, avoiding at bottom left, and compromise in the centre. The
LO then presents 5 conflict scenarios and asks the student to identify the
style in use. Finally, the LO explains that Maddux believes no one style is
always best for all situations.

Our OOSE design for a conflict resolution LOC is shown in Figure 4 as an
incomplete class in Java. Class Conflict has one attribute – the conflict style
in question, represented as a string of characters. When an object of class
Conflict is instantiated, the style is initialised to an input string. Class
Conflict defines the following operations on this style – display, explain,
animate, and identify.

The student interacts with a Java program that instantiates requisite
Conflict objects. For example, if the student follows the sequence intended
in Rathsack’s LO, the ‘avoiding’ object would be instantiated first. This
style would be displayed on the matrix (in relation to the other 4 styles),
explained, and animated on the matrix (in terms of the x and y
dimensions). Next, the ‘accommodating’ object would be instantiated.
Similarly, this style would be displayed on the matrix (in relation to the
other 4 styles), explained, and animated on the matrix (in terms of the x
and y dimensions). Next, the remaining 3 Conflict style objects would be
instantiated. Finally, the Java program that instantiates Conflict objects
would ask the student to identify the style in use in a conflict scenario. The
Conflict objects could cooperate to randomise this test.

Note that another student, perhaps more advanced, could interact with
Class Conflict to instantiate Conflict objects (LOs) in another sequence,
bypassing some LOs if desired.

Morris 51

Figure 4 : Class Conflict

4. Object oriented design principles for learning objects

In a software system, coupling measures how cleanly objects are
partitioned. Cohesion measures how closely activities in an object are
related. Coupling and cohesion are interdependent measures – the less
cohesive an object, the more likely it is coupled with other objects. The
more coupled an object is with other objects, the harder it is to alter or
upgrade the object in isolation, which lowers maintainability. A strongly
coupled object is less reusable without significant maintenance.

In our terminology, the ‘objects’ referred to above are SOCs, not
individually instantiated SOs. Following Boyle (2002), we assert the above
applies as much to LOCs in a LO lesson as to SOCs in a software system.
Weak coupling between LOCs in a LO lesson promotes the ‘bilities’
(section 1) in that the maintainability of SOCs is essentially the
manageability of LOCs. The more cohesive each LOC is, the less coupling
is required when LOCs are reused in a new LO lesson.

Stevens and Myers, (Yourdon & Constantine,1978) devised a table to
classify the level of cohesion of a software module (ie. SOC). (Although
their work pre-dated OOSE design methodology, it is readily
accommodated.) We adapt their 7-level scale to LOCs below. In section 4.2
we show how to classify a LOC’s level of cohesion and we explain how
each of the lower levels further reduces LOC reusability. We assert that
awareness of cohesion levels can improve the design of LOCs, as we
illustrate in section 4.3 with the examples from section 3.

52 Australasian Journal of Educational Technology, 2005, 21(1)

4.1 Learning object levels of cohesion

The strongest cohesion is called functional, and the weakest cohesion is
called coincidental. Each level in Table 1 is less cohesive that the level
above it.

Table 1: Cohesion levels

Cohesion level Description Example

Functional
(strongest)

Each activity in a
LOC contributes to a
single learning
objective related task
or learning outcome.

Learn to calculate net employee salary.
This could be one of many tasks an
accountant learns. It comprises: getting the
gross salary, subtracting legal deductions,
computing taxes. Every step contributes to
the single purpose outcome of this LOC.

Sequential The outcome
(output) of each
activity in a LOC is
the input to the next
activity in the LOC.

Learn to paint a picture. This LOC could
comprise: sketching, painting outlines,
coloring shapes, adding texture, signing
and dating. Each activity uses the result of
the previous activity on the canvas. The
picture may be complete, but learning to
paint could still be a life-long objective, so
the LOC is not functionally complete.

Communi-
cational

The activities in a
LOC share the same
attributes, or inputs
and outputs.

Learn to summarise, say, a chapter of a
book. This LOC could comprise: reading
the chapter, highlighting headings in the
chapter, listing key words in the chapter,
writing sentences that connect key words
in the chapter. Each activity uses the
chapter, but not necessarily the result of
the previous activity.

Procedural Control flows from
one activity to the
next in the LOC, ie.
the activities are
related solely by their
order of execution,
which is arbitrary.
Data passing in and
out of the LOC are
unrelated.

Learn to dissect, say, a fish or mouse. This
LOC could comprise: cleaning the bench,
arranging implements, preparing the
specimen, starting experimental notes,
using scalpel, recording observations. Each
activity leads to the next, but it does not
necessarily use the result of any previous
activity.

Temporal The activities in a
LOC are related in
time only, ie. the
activities are
executed at about the
same time.

Learn to study. This LOC could comprise:
turning off the radio and TV, collecting
pen, paper and text book, working at one’s
desk, ignoring phone calls and other
distractions, making notes, etc. All these
activities occur during study time, but they
need not occur in this exact order.

Morris 53

Coincidental
(weakest)

The activities in a
LOC are unrelated by
any of the above.

Learn to tidy up, say, a room. This LOC
could comprise: disposing of litter,
hanging clothes, finishing a snack, making
the bed, vacuuming and so on. Not all
these activities need be done (together).
The activities are not logically related, nor
connected by flow of execution or data.

The reusability issue for each level below functional cohesion is explained
in Table 2. Note that the issue at a given level is often in addition to
reusability issues at higher levels.

Table 2: Cohesion levels and reusability

Cohesion level Reusability issue
Sequential Not as reusable as a functional LOC because the sequencing of

its activities cannot be easily altered.
Communic-
ational

Either the input or output coupling is generally broader than for
the above levels of cohesion. Reuse often needs a subset of this
coupling, hence redundant coupling; or a cut down version of
the LOC is created, which still duplicates functionality. A
communicational LOC can often be split into functional LOCs.

Procedural Intermediate or partial results are often passed in to or out of a
procedural LOC, reducing reusability. It is tempting to combine
distinct activities for ‘efficiency’ or ‘convenience’, further
reducing reusability.

Temporal Activities in a temporal LOC tend to be related to activities in
other LOCs, increasing coupling. Activities in a temporal LOC
are often combined because they can occur together. But this
compromises reusability in another situation where the activities
can occur at different times.

Logical Broad input coupling is required for a logical LOC to select
which activity to perform. The activities are typically combined
because they share common parts. Reusability suffers.

Coincidental A combination of inputs often determines the selected activity.
As a result it can be hard to understand a coincidental LOC
unless its internal detail is examined. This reduces reusability.

4.2 Determining learning object cohesion

The description or name of a LOC may suffice to determine its level of
cohesion, as shown in Table 3.

We note that the presence of any of the above key words could be a
valuable indicator for metadata tagging purposes, but further research is
required to evaluate reliability.

54 Australasian Journal of Educational Technology, 2005, 21(1)

Table 3: Determining object cohesion by name or description

Cohesion Level Name or Description
Functional Simple verb-object phrase.
Sequential Commas often required.
Communicational The word ‘and’ is often present.
Procedural The word ‘or’ is often present, or words synonymous with

repetition, eg. ‘while’, ‘until’.
Temporal Time related words apparent, eg. ‘start’, ‘end’, ‘before’, ‘after’.
Logical An ‘umbrella’ word is present, eg. ‘all’, ‘every’, ‘total’.
Coincidental Description or name is meaningless, eg. ‘miscellaneous’, ‘X’, ‘Z-

process’.

In Figure 5 we adapt a decision tree (Page-Jones, 1998) that enables a LOC’s
level of cohesion to be more accurately determined by asking and
answering a few questions, starting at top left.

Figure 5: Cohesion decision tree

If all the activities in a LOC share more than one level of cohesion, the LOC
has the highest (strongest) of the shared levels of cohesion – chains in
parallel rule. If the activities in a LOC exhibit various levels of cohesion, the
LOC has the lowest (weakest) level of cohesion – chains in series rule.

4.3 Cohesion of example learning objects

Below we use Figure 5 (above) to establish the cohesion of the examples in
section 3.

Morris 55

If we address the first question (top left of Figure 5) for Boyle et al’s Java
while loop LO, the answer at first appears to be ‘yes’ – the While LO
appears functionally cohesive in that each activity contributes to
understanding how while loops work, which is the LO’s learning objective.
But on closer examination, the activities performed by the While LO do not
contribute to one and only one learning objective related task. The LO
performs two pairs of similar analysis activities in sequence (hammer and
submarine, horse and lorry), followed by one synthesis activity. Data is not
passed between the activities, so the sequence is program controlled (ie.
chosen by the instructional designer). So the LO exhibits procedural
cohesion at best. If we similarly address the OOSE design for a while loop
LOC shown in Figure 3, a LO can be instantiated for each of hammer,
submarine, horse and lorry. The sequence is determined by the student (via
input data), so at least the LOC exhibits communicational cohesion, which
is better than procedural cohesion.

The situation is similar for Rathsack’s conflict resolution LO and our
Conflict LOC shown in Figure 4. If we address the first question (top left of
Figure 5) for Rathsack’s LO, the answer at first appears to be ‘yes’ – the LO
appears functionally cohesive in that each activity contributes to
understanding Maddux’s five styles for managing conflict, which is the
LO’s learning objective. But after closer examination, the activities
performed by the Conflict LO do not contribute to one and only one
learning objective related task. The LO performs five similar activities in
sequence, one for each style. Data is not passed between the activities, so
the sequence is program controlled (ie. chosen by the instructional
designer). So the LO exhibits procedural cohesion at best. If we similarly
address the OOSE design for a Conflict LOC shown in Figure 4, a LO can
be instantiated for each of the five styles. The sequence is determined by
the student (via input data), so at least the LOC exhibits communicational
cohesion, which is better than procedural cohesion.

Since each OOSE designed LOC exhibits stronger cohesion than the
original LO, our LOC is likely to require weaker coupling with other LOCs
in a new LO lesson, thereby enhancing its reusability.

5. Support for object oriented learning objects

We refer to our OOSE approach to designing LOs and LO lessons
(described above) as ‘object oriented learning’ (OOL). We claim benefits of
OOL include the following in addition to enhancing the ‘bilities’ (section 1).
Dynamic instantiation of a LO from its LOC in response to a student’s
choice enables a LO lesson to not only be more highly interactive but also
far less predetermined in its sequence of activities for each student. Also

56 Australasian Journal of Educational Technology, 2005, 21(1)

the instructional designer need not build lessons as a predetermined
sequence of LOCs, as the student can be given some choices.

Below we investigate supports available for our OOL approach. We outline
how OOL can be accommodated in a LO development project from initial
application of an instructional design theory to final implementation in a
learning management system.

5.1 Object oriented learning and instructional design theory

It is clear that the design of LOs and LO lessons should be informed by an
instructional design theory (Wiley, 2001). After these pedagogical choices
are made, an instructional designer can apply our OOL approach, where
the focus is on structuring the functionality of LOCs. We assert that OOL is
independent of, and complementary to, instructional design theory.
Further research is needed to confirm this.

In fact we are presently using OOL to design a LO lesson composed of
several LOCs. We intend to use UML during the design process in order to
report on its usefulness. But the focus of our study will be on evaluating
the effectiveness of our OOL approach on LOC ‘bilities’ (section 1).

5.2 Object oriented learning and learning management systems

Learning management systems like Blackboard and WebCT currently
facilitate the development of e-learning courses, their collection in a
repository, and their delivery to online students at any time over any
distance. Learning management systems are also starting to support
standardised metadata tagging of LOs to better facilitate the combination
of LOs into lessons, courses and educational programs. Our OOL approach
contributes to LO metadata tagging as explained in section 4.2. We contend
that our approach is automatically accommodated within the
pedagogically neutral standards adopted by the IEEE (LTSC, 2003) for LO
packaging.

Learning management systems will also need to provide the ‘programming
language’ that enables instructional designers using OOL and students to
realise the full potential of the dynamics inherent in the design of LOCs.
Our use of Java in section 3 was not only to illustrate the application of
OOSE to the design of LOs. Java can also be the programming language
used in a learning management system to implement student centred
combination of LOCs and the dynamic instantiation of their LOs. However,
the power of a general programming language environment such as Java is
not necessary for this purpose. Indeed, further research is desirable to
produce a complete yet simple programming tool for instructional

Morris 57

designers to use across learning management systems. One avenue to
explore is the programmability introduced into the computer aided
instruction systems of the past (Gibbons, Richards, 2001). Fortunately,
today’s graphic user interfaces, more powerful computers, and faster
connectivity will make the experience far more friendly for both today’s
instructional designers and students.

6. Conclusion

We have applied object oriented software engineering (OOSE) design
methodology to the design of learning objects (LOs). Our OOL approach
extends and refines Boyle’s design principles for authoring dynamic
reusable LOs (Boyle, 2002) as follows. A prospective LO’s attributes and
activities are first ‘abstracted’ into a LO class (LOC). This facilitates
dynamic instantiation of an individualised LO for, or by, a student during
a lesson; as we illustrated with two example LOCs for different disciplines.
We introduced Unified Modelling Language (UML) to illustrate the LOC
design process (Figures 1-2). We showed how inheritance and
polymorphism further enhance LOC reusability in other lessons.

We explained how our OOL approach can benefit the design of lessons
comprising several LOCs. We identified a Java-like interface type as a
useful mechanism to assist reuse and re-purposing of LOCs into new LO
lessons. This application of OOSE design methodology led us to synthesise
the criteria that define a truly object oriented LOC. Our criteria refine the
LO definition work of Wiley and others (Wiley, 2001), and extend LO
design guidelines (Hamel & Ryan-Jones, 2002).

We adapted to LOCs a scale for grading the cohesion of software modules
(Yourdon & Constantine, 1978). We showed how to classify a LOC’s level
of cohesion, and described how each of the lower levels further reduces
reusability. We illustrated with two OOSE designed LOCs that exhibit
stronger cohesion than the original LOs. These LOCs are likely to require
weaker coupling with other LOCs in a new LO lesson, thereby enhancing
reusability. Our adaption of cohesion levels to LOs further extends and
refines Boyle’s design principles for authoring dynamic reusable LOs
(Boyle, 2002).

We explained how our OOL approach is independent of, and
complementary to a) the instructional design theory underlying the LO
design process, and b) the metadata standards adopted by the IEEE (LTSC,
2003) for LO packaging. Pedagogical decisions can be made by the
instructional designer before applying our approach to structuring the
functionality of LOCs. Our OOL approach is pedagogy neutral in this

58 Australasian Journal of Educational Technology, 2005, 21(1)

respect. Our approach contributes to LO metadata tagging by identifying
attributes and activities for each LOC.

We assert that our OOL approach expands and informs the LO structuring
options for instructional designers beyond those offered by general
software engineering principles. We believe our approach assists the
systematic development of more complex, authentic lessons, composed of
dynamically created LOs. We expect further contributions toward an OOL
methodology will facilitate the design and implementation of larger scale
lessons, courses and educational programs, composed of LOs that
increasingly exhibit the ‘bilities’.

References

Boyle, T. (2002). Design principles for authoring dynamic, reusable learning objects.
In A. Williamson, C. Gunn, A. Young and T. Clear (Eds), Winds of Change in the
Sea of Learning: Proceedings 19tth ASCILITE Conference, pp. 57-64. Auckland, New
Zealand: UNITEC. [viewed 26 Nov 2003]
http://www.ascilite.org.au/conferences/auckland02/proceedings/papers/028.pdf

Boyle, T. et al. (2003). Learning objects for introductory programming. [viewed 1
Mar 2004] http://www.londonmet.ac.uk/ltri/learningobjects/examples.htm

Computer Education Management Association (2001). Learning Architecture and
Learning Objects. [1 Mar 2004] http://learnativity.com/lalo.html

Gibbons, A.S., Nelson, J. & Richards, R. (2001). The nature and origin of
instructional objects. In D. Wiley (Ed), The Instructional Use of Learning Objects. [1
Mar 2004] http://www.reusability.org/read/

Hamel, C.J. & Ryan-Jones, D. (2002). Designing instruction with learning objects.
International Journal of Educational Technology, 3(1). [verified 14 Jan 2005]
http://www.ed.uiuc.edu/ijet/v3n1/hamel/index.html

LTSC (IEEE Learning Technology Standards Committee) (2003). Standard for
Information Technology - Education and Training Systems - Learning Objects
and Metadata. http://ltsc.ieee.org/wg12/index.html [viewed1 May 2004]

Morris, E.J.S. & Zuluaga, C.P. (2003). Educational effectiveness of 100% online IT
courses. In G. Crisp, D. Thiele (Eds), Interact: Integrate: Impact: Proceedings 20th
ASCILITE Conference, pp. 353-363. Adelaide: University of Adelaide.
http://www.ascilite.org.au/conferences/adelaide03/docs/pdf/353.pdf

Page-Jones, M. (1998). The Practical Guide to Structured Systems Design, 2nd ed.
Wayland Systems Inc. [viewed1 Mar 2004]
http://www.waysys.com/ws_content_bl_pgssd_ch06.html

Pfleeger, S.L. (2001). Software Engineering Theory and Practice. Prentice Hall, 2nd ed.

Morris 59

Priestley, M. (1996). Practical Object-Oriented Design with UML. McGraw-Hill.

Rathsack, R. (2001). Conflict Resolution Styles. [1 Mar 2004] http://www.wisc-
online.com/objects/index.asp?objID=PHR300

Wiley, D. (2001). Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. In D. Wiley (Ed), The Instructional Use
of Learning Objects. [1 Mar 2004] http://www.reusability.org/read/

Yourdon, E., Constantine, L. (1978). Stuctured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Prentice Hall.

Zuluaga, C.P. & Morris, E.J.S. (2003). A learning management model for mixed
mode delivery using multiple channels (Internet, intranet, CD-ROM, Satellite
TV). In G. Crisp, D. Thiele (Eds), Interact, Integrate, Impact: Proceedings 20th
ASCILITE Conference, pp. 562-568. Adelaide: University of Adelaide. [verified 27
Oct 2004] http://www.adelaide.edu.au/ascilite2003/docs/pdf/562.pdf

Zuluaga, C.P., Morris, E.J.S. & Fernandez, G. (2002). Cost-effective development
and delivery of 100% online I.T. courses. In A. Williamson, C. Gunn, A. Young
& T. Clear (Eds), Winds of Change in the Sea of Learning: Proceedings 19th
ASCILITE Conference, pp. 759-766. Auckland, NZ: UNITEC [26 Nov 2003]
http://www.ascilite.org.au/conferences/auckland02/proceedings/papers/109.pdf

Ed Morris
School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne, Victoria 3001
http://www.rmit.edu.au/
Email: ted@rmit.edu.au

