
Australasian Journal of
Educational Technology

2005, 21(2), 263-282

Teaching IP networking fundamentals
in resource constrained educational

environments

Grenville Armitage and Warren Harrop
Swinburne University of Technology

Many educational institutions suffer from a lack of funding to keep
telecomm-unications laboratory classes up to date and flexible. This paper
describes our Remote Unix Lab Environment (RULE), a solution for
exposing students to the latest Internet based telecommunications software
tools in a Unix like environment. RULE leverages existing PC laboratories
(often based on Microsoft's Windows) to enable student access to Internet
Protocol (IP) networked hosts for telecommunications coursework and
research projects. Re-use of existing PC labs substantially decreases the cost
of introducing hands on teaching of Unix based Internet services into
curricula. We discuss our experiences of deploying, using and provisioning
RULE since early 2003. RULE itself is a handful of FreeBSD hosts, mounted
in a small back room, utilising FreeBSD's “jail” functionality to create
multiple virtual hosts.

1. Introduction

Our Telecommunications and Networking group faces a challenge
common to many tertiary educational institutions – how to keep our
students abreast of the latest IP (Internet Protocol) networking services and
technologies, while working with scarce laboratory space and limited
funding. We had a well developed and extensive set of PC Labs scattered
around campus, predominantly running Microsoft's Windows. However,
we now wanted our students to 'get their hands dirty' by actually installing
and using IP based server and client applications from the open source
community [1], for example, web servers like Apache [2], web
crawlers/indexers and web proxies, alternative file servers such as Samba
[3], or even running their own Domain Name System servers. Our students
would learn how to use, modify and rebuild these applications.

We had also decided in late 2002 that a strong emphasis on Windows PC
environments needed to be balanced by an increased exposure to Unix like

264 Australasian Journal of Educational Technology, 2005, 21(2)

environments, particularly in the context of IP networked services. The
school's existing PC labs were frequently booked solid for classes run by a
variety of departments and we also wanted to avoid the additional cost (in
time and salary) of recreating/rebooting machines just for our IP
networking classes. Building a separate computer lab, with dedicated
machines, desk space and infrastructure support, was considered an
expensive last resort.

Our solution is the Remote Unix Lab Environment (RULE) (Figure 1).
RULE provides multiple networked Unix like hosts without requiring
additional dedicated lab space for Unix only machines. The existing
campus PC labs are used as terminals through which students access their
assigned RULE hosts. Because access is via our campus network, students
can also engage in project work from home or from wireless equipped
laptops. RULE itself is housed in a standard 19 inch rack and tucked away
in a corner of a small room, meeting our goal of minimal additional space
and infrastructure costs.

Figure 1: Remote Unix Lab Environment is accessible
from networked machines around the campus

RULE is built around FreeBSD [4], a robust, well supported and free Unix
like operating system that runs on a range of common and inexpensive PC
motherboards. FreeBSD can instantiate multiple virtual hosts on a single
motherboard, multiplying the number of students we can support with a
limited set of physical hardware.

Armitage and Harrop 265

Although our teaching staff are technology literate, they are not trained as
system administrators. Thus, we developed a Jail Host Toolkit (JHT) to
create and manage RULE virtual hosts (so named because the virtual hosts
are enabled by FreeBSD's 'jail' functionality [5]). JHT started as a set of
scripts and has evolved into a single application interface for staff to
manage RULE hosts in an effective and clean fashion. Our first generation
of RULE was based on FreeBSD 4.7. We later moved to FreeBSD 4.9 and are
currently running RULE and JHT under FreeBSD 5.3.

In section 2 we outline the various approaches we could have used to
instantiate RULE, and section 3 elaborates on our reasons for choosing
FreeBSD jail hosts. In section 4 we describe our experiences using RULE –
types of classes, student experiences and our experiences as teachers and
lab demonstrators. Section 5 discusses how campus network security is
affected by RULE, while section 6 provides a relatively detailed analysis of
how well RULE's jail hosts function on different PC motherboard
configurations. Section 7 wraps up with a brief review of JHT, the open
issues with respect to resource management between jail hosts, and our
future plans for RULE.

2. Possible solutions

There are a number of technical approaches we could have pursued to
instantiate a RULE system meeting our pedagogical and cost goals. These
goals were:

• Provide students with self directed access to internet applications (eg.
clients, servers, and/or proxies) that they can compile, install, trial,
modify and rebuild/reconfigure with minimal supervision.

• Allow students to access RULE from anywhere on the campus intranet.
• Protect the rest of the university (and wider Internet) from student

activities inside the RULE.
• Utilise off the shelf components wherever possible and work in a

'headless' configuration (no directly attached monitors, keyboards or
mice).

First we considered our target operating system environment. We realised
that Unix like environments typically provide the most flexible contexts
within which to deploy, use and reconfigure open source IP networking
software. In principle this could be achieved in a number of ways,
including Microsoft Windows installations combined with Cygwin [6] (an
open source, Unix like application layer environment for Windows) or free
Unix like offerings such as Linux [7], FreeBSD, OpenBSD [8], and NetBSD
[9].

266 Australasian Journal of Educational Technology, 2005, 21(2)

Second we considered the physical realisation of our RULE system – a
central multi-user machine, multiple dedicated machines, multiple virtual
machines or multiple virtual hosts. A central multi-user machine (accessed
from remote terminals, which may themselves be PCs in standard PC labs,
fails to provide our target learning environment. Each student needs to feel
like they 'own' the IP host on which they're doing their experiments, yet
only one user account at a time can run a network client or server on a
particular 'port' numbers. For example, only one user account would be
able to run a webserver on the traditional 'port 80', with other students
forced to use alternative ports, diminishing the learning experience.

The most flexible, albeit expensive, approach is to implement a laboratory
of individual desktop computers - either entirely dedicated to the task [10]
or dual booting some combination of operating systems. Some institutions
have gone as far as to fully support dual boot Windows/Linux on entire
lab setups on a wide scale [11]. A closely related variation is to 're-image'
these lab machines (effectively re-installing the operating system from
scratch) at the beginning of each lab class, a time consuming option and
something we were trying to avoid.

Virtual machines and virtual hosts are an attractive alternative to dedicated
machines when space and cost are at a premium. In both cases a single
physical computer emulates many machines or hosts. The virtual machines
or hosts would be accessed remotely by client applications running on
existing campus lab machines (which do not, themselves, need to be
running a Unix like operating system). Tools like ssh [12] VNC (remote
desktop viewing software) and X11 (a network GUI allowing applications
to display on remote machines) can all be used for remote access.

Virtual machines, such as those implemented by VMware [13], Bochs [14],
Plex86 [15] or QEMU [16], provide virtual hardware environments within
which a number of different operating systems may be concurrently
operating. Running multiple kernels under VMware has been described
recently to be an effective method of teaching operating system
development [17], because the students can rebuild entirely custom kernel
environments and have full control over the virtual machine.

Virtual machines may fully emulate the desired hardware environment in
software, or employ a mixture of emulated and 'real' execution contexts. In
the former case the processor being emulated may be entirely different to
the real hardware on which the virtual machines are being run. In the latter
case, the virtual machines have the same architecture as the real underlying
hardware. At the time we began development of RULE, virtual machines
were either very slow (eg. orders of magnitude slower than the underlying

Armitage and Harrop 267

host hardware in the case of full emulation with Bochs) or expensive (such
as the effective, yet commercial, VMware).

Virtual hosts are a less complex alternative to virtual machines. Rather than
virtualise an entire hardware environment, virtual hosts create concurrent,
distinct user space 'host' environments on top of a single instance of a
running operating system kernel. This single kernel mediates access to
shared resources such as disk, network, and general I/O ports. By 2002 a
number of Internet Service Providers (ISPs) were using FreeBSD's in built
'jail' functionality to create virtual webhosting services. Since virtual hosts
are entirely sufficient to meet our stated goal of exposing students to
typical Internet applications, we decided to explore the use of FreeBSD as
our target operating system environment.

Figure 2: Virtual hosts share a common kernel

3. Choosing FreeBSD for virtual hosts

Ultimately there were three key reasons why we chose to base RULE
around FreeBSD:

• FreeBSD's clean 'packages' and 'ports' mechanisms (for installing
applications in pre-compiled and compile as needed forms) provides
students with a number of ways to experiment with thousands of pre-
existing networked applications.

• Many application binaries compiled under Linux also run directly
under FreeBSD and most of these can be recompiled as native FreeBSD
applications if needed.

• FreeBSD has in built and well understood facilities for creating virtual
hosts.

Virtual FreeBSD hosts are a central part of RULE. We developed a Jail Host
Toolkit (JHT) to simplify the establishment and management of multiple
virtual hosts on a single physical motherboard. Because JHT virtual hosts

268 Australasian Journal of Educational Technology, 2005, 21(2)

are implemented using the FreeBSD kernel's jail(8) functionality, we
refer to them as jail hosts. The machine in which jail hosts reside is referred
to as the primary host.

Jail hosts are replicas of the FreeBSD user space environment, each with
their own distinct IP addresses, user accounts and the ability to run
separate instances of most user space applications. Once a jail host has been
configured and booted, it appears just like a regular, IP accessible FreeBSD
machine. For example, Figure 3 captures the equivalence between three
independent hosts on an IP network and a single FreeBSD machine
supporting three jail hosts – from elsewhere on the network, these two
scenarios are largely indistinguishable.

Figure 3: Jail hosts appear as independent IP hosts on the network

In essence RULE is a collection of jail hosts that provide many more
independent FreeBSD environments than we have physical motherboards,
thereby saving valuable floor and rack space. Using FreeBSD jails
ultimately came down to the questions of performance, price and
flexibility. Our initial functional goals for RULE could have been met by
running multiple virtual machines on a single primary host.

However, the overhead of emulating multiple concurrent kernel and user
space environments seemed totally unnecessary, particularly given our
focus on student access to user space network applications.

 If our focus had been on kernel development and experiments with kernel
resident networking code then virtual machines would have been a
compelling choice. However, when our educational goals evolve to this
level we will also investigate simply deploying multiple, independent
small form factor motherboards for each student's use.

Armitage and Harrop 269

4. Experiences with RULE

Our experiences with rule can be roughly broken into three categories.
Examples of what we have been teaching with RULE, the teaching
experiences and the student's experiences. We will briefly touch on all
three of these topics.

4.a. Lab class curriculum

RULE first saw operational use in March 2003, and has since been used
successfully over three semesters and five different semester long classes.
Our students remotely access their RULE hosts (one or more each,
depending on the particulars of each lab class) from regular Windows
based desktop PCs.

Our typical lab classes involve students accessing their jail hosts using
command line and remote file copying tools based on 'secure shell' (ssh)
[12], giving them a multiplatform client/server environment in which to
work. From Windows based lab machines we use the free software
packages PuTTY [18] and WinSCP [19], while students accessing RULE
from Linux or FreeBSD machines typically have their own equivalent open
source tools.

Students do all their work within jail hosts. They can be given hands on
experience of having root (administrative user) access within their jail host,
(managing group and user accounts, access levels, system services, etc)
without compromising other jail hosts or the primary host. Students can
run their applications on “well known” port numbers without conflicting
with similar applications being run by other students whose jail hosts share
the same primary host. (Neither of these would be possible if we placed all
the students on a single, central multi-user host and differentiated them
solely by login name or user ID.) RULE was first used with a class of final
year undergraduate Telecommunications Engineers. We tasked them with
writing and testing their own web proxy using one of the three
programming languages C, C++ or Java. In addition to their regular lab
Windows PC (with a standard university software configuration) each
student effectively had their own dedicated Unix machine on which to
develop and debug their web proxy. Students were able to initiate web
page requests from their Windows desktop (either from Internet Explorer
or Netscape) and see their desktop client connecting to, and eventually
communicating through, their own web proxy.

A postgraduate (Masters) class in 2003 made use of RULE to experiment
with installing, configuring, and modifying the open source Apache web
server. As with the undergraduates, RULE allowed students to launch

270 Australasian Journal of Educational Technology, 2005, 21(2)

client requests from their standard Windows/Internet Explorer desktop
and see their desktop client(s) accessing their own custom configured web
server. Being able to control both the client and server side of an http (web)
exchange enabled the students to make a much clearer association between
their configuration actions and the consequent effect on web service
delivery.

In the first half of 2004 we utilised RULE on a larger scale (60+ jail hosts
rather than the 20-25 jail hosts deployed in 2003). Qualitative feedback
from students is that RULE host performance is sufficient for their class
work (we discuss RULE performance further in section 6).

RULE allowed our students to become familiar with Unix like command
line environments, to setup and configure a small http server (a version
known as 'thttpd', or 'tiny httpd' [20]), setup and configure a web proxy (a
version known as 'tinyproxy' [21]), and setup and configure their own
Domain Name Service (DNS) server [22]. Two other classes (part of our
postgraduate coursework program) have also been leveraging RULE hosts
to provide platforms for student-configured web servers and back-end
database operations (e.g. using the PHP scripting language [23] and
mySQL database package [24] under FreeBSD).
In each case:

• Students gained valuable experience in a multiplatform environment,
seeing first hand how Unix and Windows systems interoperate over IP
networks.

• Students saw their networked services respond to their configuration
changes.

• We leveraged the university's existing PC labs as the student's “front
end” to RULE.

RULE also enables class experiments involving content “server farms” on
the in house network. With a single primary host platform a student can
emulate a cluster of independent web, ftp or email servers. Nevertheless,
jail hosts do impose certain limitations on what networking experiments
students can perform. Even if logged in as administrator (root) within a jail
host:

• Students cannot run programs that require raw access to the underlying
IP or Ethernet layers. This precludes the use of common network
probing commands such as ping and traceroute.

• Students cannot access or modify the routing tables of the underlying
primary host.

• Students cannot rebuild the kernel, or modify the running kernel's state.

Armitage and Harrop 271

These restrictions are generally acceptable when teaching students about
client/server applications. More advanced 'low level' networking classes,
focused on Ethernet traffic monitoring, routing and switching, will need a
version of RULE that allows direct access to primary hosts. Appendix A
briefly discusses the restrictions associated with jail hosts in more technical
detail.

4.b. Teaching experiences

Having high level control of every student's RULE hosts from the primary
host level provides lab demonstrators with a number of benefits. JHT
allows lab demonstrators to remotely 'log into' any student's RULE host as
an administrator, without knowing any of the student's passwords. This
allows quick debugging of student inquiries about their work. Teachers can
investigate problems from within the context of the student's work in
progress, issue commands to locate (and possibly correct) the student's
problem and provide necessary feedback to the student. This process has
proven invaluable when solving after hours inquiries from students
(usually via email).

A number of teaching and administrative benefits accrue from the fact
every RULE host's 'hard drive' is in fact a regular directory on the primary
host.

Teaching staff logged into the primary host can read/write any file on a
student's RULE host, which we have found especially helpful. Students
sometimes 'mangle' various configuration files beyond the point where
they can be successfully read. In these situations the student can be taken
back an arbitrary number of steps in their lab work by having their 'broken'
files replaced by known good copies residing on the primary host. The
student can then continue from an earlier point in the lab session knowing
things are in working order. Administratively it is trivial to run regular file
system backups of each jail host from the primary host level, without
requiring any action by the student in charge of each jail host. An entire jail
host – user files, system files, etc - can be archived and restored with tools
as simple as tar or rsync [25]. Indeed, the administrator (root) account on
each jail host cannot prevent such backups from being performed. This has
at least three interesting consequences:

• Students can be protected from themselves - if they accidentally delete
an important part of their jail host's file system, it can be restored from
the regular backups.

• File system snapshots at the primary host level can track the evolution
of each student's work - a useful audit trail in cases where you suspect
one student (or lab group) has augmented their work with solutions
from another student.

272 Australasian Journal of Educational Technology, 2005, 21(2)

• Automated tasks on a primary host can switch around the identities of
jail hosts according to class schedules - the equivalent of re-imaging lab
machines from CD, but without the labor intensive intervention of a
staff member. (There can be many more jail host file systems stored on
the primary host than there are active jail hosts at any one time.)

From the primary host, it is also quite simple to monitor student login and
logout events recorded by each jail host, file system consumption within
each jail, and generally obtain a globally scoped perspective on what is
going on across the jail hosts. This makes class supervision and control far
simpler than if students had their own, independent Unix hosts each on its
own motherboard. For example, during the lab class run in early 2004 and
early 2005 we collected lab reports from 'well known' home directory
locations within each jail host – using either simple file copy, http fetch, or
ftp transfer into the primary host as required.

4.c. Student experiences

To date personal feedback and end of year subject evaluation forms have
provided satisfying positive student feedback about the hands on learning
approach of RULE. Despite typically having no prior exposure to Unix like
operating systems our students respond well to the hands on
demystification of Internet service delivery.

Our use of open source software packages allows students to pursue self
directed research and experimentation above and beyond the minimum
class requirements. By default our FreeBSD jail hosts provide a complete
C/C++ development environment, with compiler and all necessary code
libraries. Because RULE is accessible from regular Windows hosts over
dialup and wireless links, enthusiastic students are able to continue with
their experiments from home or other locations around the University
campus outside of their 'official' PC laboratory time.

It has been very exciting to see a number of students in each class begin
exploring the Unix environments provided by their RULE hosts,
experimenting with configurations and software beyond those required by
their actual lab classes. A number of students wanted to further explore
and expand upon the work being completed during lab hours but were
afraid of irreversibly 'breaking' their official RULE host prior to completing
their assessment task for the week.

Learning often works best when a student experiments with a software
package, breaks it, studies what went wrong and starts again. Due to the
ease with which additional RULE hosts can be created on a primary host,
we could provide additional temporary hosts to use and experiment with.
As noted earlier, it is easy for teaching staff to fix files or entire directory

Armitage and Harrop 273

structures on RULE hosts. When the students get to this point, their
temporary host can just be reset to what we define as a default state. They
can then start again with new knowledge of what (not) to do.

In addition to the cost savings inherent in re-using existing Windows based
lab classes, students find it easier to transition into a Unix command line
environment when their first interactions are through familiar Windows
based GUI applications. By using PuTTY the FreeBSD command line
interface appears within a standard Windows window. Students use the
Windows based web browsers they are familiar with to test the servers
they have configured. And the WinSCP application allow files to be
transferred to and from virtual RULE hosts using a familiar Windows drag
and drop paradigm.

5. Protecting the campus from RULE

Whenever students are given free rein of networked machines, network
security must be considered. In the case of RULE, security is about
protecting the campus network from RULE rather than the other way
around. Although students cannot actually get 'raw' access to the
underlying network interface (FreeBSD jail hosts force applications to
access the network only through Unix socket() facilities for conventional
TCP or UDP communication), we implemented RULE on an isolated local
area network (LAN), connected to the rest of our campus network through
an additional FreeBSD based firewall (a regular PC motherboard with two
Ethernet interfaces).

This firewall implements rules to match the class projects being run. For
some classes, we totally block outbound connections, allowing only
inbound connections that originate from elsewhere on the campus network
(eg. the Windows PC lab from which the students are doing their lab class).
For other classes we may allow outbound connections, but only to specific
on campus destinations. We would exclude things like our campus web
proxy - the last thing we want are 'interesting' projects on RULE reaching
out and annoying people around the Internet.

With FreeBSD's in built traffic shaper, the firewall can also limit traffic
speeds in and out of individual jail hosts, providing additional protection
to the outside world and ensuring fair use of the network link in and out of
the primary host. Our current RULE limits jail hosts to 200 kbit/sec in each
direction (the equivalent speed to an entry level broadband Internet
connection) - sufficient for the lab classes we have run to date.

Our insistence that students login across a secure shell (ssh) connection
ensures that student's communications with their RULE host(s) are

274 Australasian Journal of Educational Technology, 2005, 21(2)

encrypted, including their initial username/password exchange. A feature
of ssh known as 'port forwarding' is a potential security hole, allowing TCP
connections to bypass the primary host's firewall. For now we impose on
students the requirement of responsible use - port forwarding is a
conscious act and they will be traced if it abused.

6. RULE virtual host scalability

In the following section we look in detail at the technical issues affecting
typical RULE host performance, independent of the teaching and learning
considerations discussed so far. These include the impact of CPU speed,
available memory (RAM) and hard disk size on the number of jail hosts a
single primary host can accommodate. (Readers uninterested with the
technical details of motherboard configuration can skip this section
without missing key insights into the utility of RULE.)

Our first implementation of RULE in 2003 utilised low power
motherboards (500 MHz Intel compatible processors) from VIA
Technologies [26], each running five jail hosts. These motherboards were
considerably underpowered for computer intensive applications [27], but
nevertheless the jail hosts were sufficient for the modest Java development
tasks assigned to students that year. In 2004 we moved to a smaller number
of substantially more powerful primary hosts – two motherboards based
around 2.6 GHz Pentium 4 processors, with 2 Gbyte of RAM each. For the
first half of 2004 we configured each primary host with approximately 30
jail hosts. It is worth considering more closely the factors that actually limit
the number of jail hosts on a given primary host.

6.a. Practical constraints

Educational networking experiments fall into two broad categories –
demonstrating how fast a particular protocol or application functions, and
demonstrating correct protocol or application functionality. RULE based
around jail hosts is primarily suitable for the latter case, where outright
speed of each jail host is not a major requirement. In practice almost all
interesting network protocols and networked applications (including mail
clients and servers, web servers, DNS servers, etc) can be demonstrated
and taught on a live network using the equivalent of a 100 MHz processor.
Using this logic, common (circa mid-2004) PC motherboards with CPUs in
the 2 GHz to 3 GHz range might be provisioned with at least 20 to 30
concurrent jail hosts.

Another constraint is disk space. A modestly functional FreeBSD jail host
requires at least 300 MB of primary host disk space (a standard FreeBSD 4.9
installation takes around 140 MB, but we need to add a few extra packages
and allow for temporary directories and some work space). If we expect the

Armitage and Harrop 275

students to do any reasonable work (recompiling open source programs,
etc), then 600 MB to 1 GB of disk space per jail host becomes more likely.
As an example, our undergraduate lab classes in 2004 were given 600 MB
per jail host (leaving 460 MB free for the students) and coped admirably
with the tasks described in section 4. At the time of writing, 40 GB to 80 GB
IDE hard drives are practically the default for cheap PCs and 250 GB IDE
drives are sold in modest to high end systems. Disk drive space appears to
be less of a limitation than available CPU speed.

Main memory (RAM) on the primary host provides a further constraint. A
minimal FreeBSD system can run with 32 MB of RAM, but at least 100 MB
per jail host is more reasonable once a few basic network services are
started. Memory consumption is likely to be the primary consideration. At
the time of writing it is easy (and cheap) to configure a 2+ GHz CPU
motherboard with 512 MB of RAM, but going to 1GB and beyond is non-
linearly more expensive (and in any case many standard PC motherboards
are limited to a maximum of 4 GB). Assuming 100 MB per jail host, a 2.6
GHz motherboard with 512 MB of RAM, limits the system to 5 jail hosts
despite the CPU speed being capable of running 26 hosts. Depending on
the relative cost of RAM modules at different sizes, it may be more
effective to purchase two motherboards with modest amounts of RAM
rather than one motherboard fully loaded.

Finally, physical size and power consumption are key considerations when
planning rack space and location. Depending on your particular price
point, a collection of small, low power mini-ITX motherboards (e.g. the
VIA Technologies range) may be preferable to a single, traditional ATX
style motherboard loaded up with a fast CPU and high capacity (read,
'expensive') RAM modules. Although the single ATX style solution might
end up with a smaller footprint (because you only need one hard drive and
one power supply), the power consumption could easily be higher (and the
RAM definitely more expensive) than building with discrete mini-ITX
motherboards.

6.b. The impact of RAM

The relationship between primary host RAM and tolerable number of jail
hosts is non-linear and highly dependent on the workload amongst the jail
hosts. Idle processes from all jail hosts are swapped out of RAM and into
the “swap space” (or “virtual RAM”) on the hard drive and loaded back
into RAM when they become active again. The overall performance of a
RULE system thus critically depends on number of active jail host
processes running at any given instant of time.

276 Australasian Journal of Educational Technology, 2005, 21(2)

 We ran two simple tests in order to illustrate the performance tradeoffs
between primary host RAM and number of jail hosts, using a primary host
running on a 2.6 GHz Pentium 4 with 512 MB (and later 1 GB) of RAM.

Our first test simulated a large number of students doing relatively simple
activities over an ssh link. The responsiveness per jail host was measured
when a 512 MB primary host was configured to have 30 and 100 jail hosts
active. Our second test involved repeated http requests to a web server and
database backend running on each jail host, measuring the system's
response time as the number of jail hosts increased. This was done both for
a 512 MB and 1 GB primary host.

Figure 4: Time taken to complete a 'typical' student exercise
with 30 or 100 jail hosts and 512 MB RAM

The first test modeled multiple students concurrently (and repeatedly)
performing an introductory Unix exercise involving basic command line
shell operations (such as making a directory and editing a file). Figure 4
illustrates that 100% of the simulated exercises completed in less than 2.5
seconds with 30 jail hosts per primary host. With 100 virtual hosts on the
primary host, 71% of tests were completed in less than 2.5 seconds, while
9% took more than 5 seconds. In each case the primary host had 512 MB of
RAM. The degradation in performance visible in Figure 4 is largely due to
each user's jail host processes, competing to be swapped into main memory
in a timely fashion.

The second test emulated another typical usage scenario for RULE -
teaching users to install and use network application servers. We installed
the Apache webserver, MySQL database Server and Client, the “Mod

Armitage and Harrop 277

PHP” Apache module and phpMyAdmin front end for MySQL database
administration, on each jail host.

Http was used to request a list of database users from each virtual host and
the time taken to load each page was measured. Ten concurrent
connections were used and requests were distributed between virtual hosts
in a random fashion. The experiment was repeated using between 1 and 45
jail hosts in the pool for the 512MB primary host and 1 to 95 jail hosts in the
pool for the 1GB primary host. The average page load time was taken for
each pool size and plotted in Figure 5.

Figure 5: Web transaction times versus number of jail hosts
for 512 MB and 1 GB primary hosts

The average page load time is consistently around 0.5 seconds, up to the
point where there are too many jail processes trying to be active at the
same time. “Too many” is roughly 32 jail hosts in the 512 MB primary host
and 77 jail hosts in the 1 GB primary host. Beyond those points, the average
page load time skyrockets, due to increased swapping between RAM and
hard disk.

The key message from Figure 5 is not the specific point where the
performance degrades. Rather, for a given distribution of workload
amongst jail hosts, doubling the RAM is going to enable approximately
twice the number of jail hosts before performance degrades significantly.

7. Open issues and future directions

RULE is in its early days and we still have a lot to learn and try on all
fronts. Resource management within primary hosts is still somewhat crude

278 Australasian Journal of Educational Technology, 2005, 21(2)

and jail hosts do not allow students full control of the host's networking
functionality. We are still improving and developing our own internal
toolkit to supplement the limited tools provided by FreeBSD itself for
managing jails.

Although FreeBSD provides the mechanism for instantiating jails, we still
need to provide our own tools for the creation and administration of
complete jail hosts. Our solution is called the Jail Host Toolkit (JHT) – a
standalone executable that supervises booting, deleting, creating and
configuring jail hosts. JHT is GUI application that is used by the primary
host's administrator. However, it is also called upon during primary host
reboots, to ensure active jail hosts are shutdown and restarted in an orderly
fashion.

Resource management between jail hosts is somewhat crude. We isolate
disk space consumption by ensuring each jail host exists on a unique disk
partition or virtual disk. At this stage we have not developed any RULE
specific mechanism for ensuring processes in one jail do not starve
processes in another jail of execution time. The primary host treats every
process from every jail as essentially equal. Similarly, memory (RAM)
consumption is shared across all processes in all jails. For now we are not
treating these as critical issues - any student projects that need high
performance and predictable computing resources probably shouldn't be
deployed on a RULE anyway.

In the longer term we also plan to increase the number of primary hosts
and provide students with their own dedicated FreeBSD machines in
RULE. This will enable the educational experience to include raw packet
access to network interfaces and the ability to control or rebuild the kernels
they run. Of course, with complete access to their own primary hosts, it is
certain that students will (whether by accident or design) jam their
machines and/or scribble all over the hard drive at some point. We are
evaluating solutions for remote power cycling/cold rebooting of individual
primary hosts and remotely restoring a primary host to pristine, pre-
student condition. Ideally the solution will not require staff to physically
access the RULE rack space (which would indirectly limit the times of day
or week that RULE can be made available to students).

8. Conclusions

It is a continual challenge for educational institutions to keep their students
abreast of the latest IP (Internet Protocol) networking services and
technologies, while working with scarce laboratory space and limited
funding. We have described the development and use of a FreeBSD based
Remote Unix Lab Environment (RULE) that provides a modest solution to

Armitage and Harrop 279

our needs. Students 'get their hands dirty' by actually installing and using
open source, IP based server, client, and middlebox applications in their
own Unix based environments. Not only do our students learn how to use
these applications, they are able to learn about modifying and rebuilding
the applications.

RULE leverages existing institutional investment in physical infrastructure
(such as Windows PCs and campus wide networking) and minimises
deployment cost. Our RULE hosts are remotely accessed using secure shell
(ssh) from existing PC labs around campus, wireless equipped laptops and
dialup hosts (regardless of their chosen operating system at home). This
provides flexible opportunities for students to learn and do their project
and class work.

To further reduce costs, we utilise FreeBSD's jail functionality to implement
jail hosts - virtual Unix hosts that provide each student with their own
FreeBSD user space environment to manage and explore. Jail hosts allow
our students to act as system administrators within a suitably constrained
domain. Jail hosts also allow student lab groups to share a single physical
machine, (the primary host) yet run concurrent and distinct instances of
applications on the same “well known” port numbers. The administrator of
the primary host can effect audits of jail host activities, without requiring
cooperation (or knowledge) of the jail host's administrators or users.

There is no specific hardware platform on which RULE is built – it is
sufficient that FreeBSD supports a suitable motherboard and that enough
resources (disk space, RAM size and CPU speed) are available for the
number of jail hosts running on each primary host. In this paper we have
provided a rudimentary evaluation of the scaling limits imposed by RAM
size, CPU speed and hard drive space. Our first instance of RULE in 2003
was based around three low power (500 MHz/512 MB RAM)
motherboards supporting five jail hosts each. In 2004 we migrated to two
high end (2.6 GHz/2GB RAM) motherboards to each support 30+ jail hosts.
Many aspects of jail host creation and management have been centralised
in our Jail Host Toolkit (JHT). RULE is currently deployed under FreeBSD
5.3.

Future versions of RULE will provide students with independent, real
Unix hosts. For now, RULE based on virtual hosts has already provided a
substantively improved level of hands on and cost effective learning
opportunities in our undergraduate (telecommunications engineering) and
postgraduate (masters of science in network systems) coursework
programs. RULE has also enabled a greater range of networked services
(for traffic sources, etc) for postgraduate and post-doctoral research
projects in our centre.

280 Australasian Journal of Educational Technology, 2005, 21(2)

Acknowledgments

Clancy Malcolm contributed greatly to the second version of JHT during
2003. Kris Mitchell provided the software development expertise behind
our 2004 re-write of JHT.

References

[1] Open Source Initiative. http://www.opensource.org/ [viewed Apr 2005]
[2] The Apache Software Foundation. http://www.apache.org/ [viewed Apr 2005]
[3] Samba. http://www.samba.org/ [viewed Apr 2005]
[4] FreeBSD. http://www.freebsd.org/ [viewed Apr 2005]
[5] H. Kamp, R.N.M. Watson, "Jails: Confining the omnipotent root," SANE2000,

2nd International SANE Conference, May 22-25, 2000, Maastricht, The
Netherlands. http://www.nluug.nl/events/sane2000/papers/kamp.pdf

[6] Cygwin Information and Installation. http://www.cygwin.com/ [viewed Apr
2005]

[7] The Linux Home Page at Linux Online. http://www.linux.org/ [viewed Apr 2005]
[8] OpenBSD. http://www.openbsd.org/ [viewed Apr 2005]
[9] NetBSD. http://www.netbsd.org/ [viewed Apr 2005]
[10] M. Aburdene et al, “An Undergraduate Networked Systems laboratory,” ACM

SIGCOMM, Workshop on Computer Networking, August 2002, Pittsburgh
PA.

[11] J. Nieh, C. Vaill, "Supporting a Windows XP/Red Hat Linux dual boot
environment," ACM SIGUCCS, 2003, San Antonio TX, USA.

[12] OpenSSH. http://www.openssh.org/ [viewed Apr 2005]
[13] VMware: Enterprise-Class Virtualization Software.

http://www.vmware.com/ [viewed Apr 2005]
[14] bochs: The Open Source IA-32 Emulation Project.

http://bochs.sourceforge.net/ [viewed Apr 2005]
[15] Kevin Lawton, "Plex86 x86 Virtual Machine Project,"

http://plex86.sourceforge.net/ [viewed May 2003]
[16] QEMU. http://fabrice.bellard.free.fr/qemu/ [viewed Apr 2005]
[17] J. Nieh, C. Vaill, "Experiences teaching operating systems using virtual

platforms and linux," ACM SIGCSE Bulletin, 2005.
[18] Simon Tatham, "PuTTY: A Free Win32 Telnet/SSH Client."

http://www.chiark.greenend.org.uk/~sgtatham/putty/ [viewed Apr 2004]
[19] Martin Prikryl, "WinSCP," http://winscp.sourceforge.net/eng/ [viewed Apr 2005]
[20] thttpd HTTP server. http://www.acme.com/software/thttpd/ [viewed Apr 2005]
[21] R. Kaes, S. Young, "tinyproxy". http://tinyproxy.sourceforge.net/ [viewed Apr

2005]
[22] C. Lee, "DNS". http://www.freebsd.org/doc/en_US.ISO8859-

1/books/handbook/network-dns.html [viewed Apr 2005]
[23] PHP: Hypertext Preprocessor. http://www.php.net/ [viewed Apr 2005]
[24] MySQL. http://www.mysql.com/ [viewed Apr 2005]
[25] Rsync. http://samba.anu.edu.au/rsync/ [viewed Apr 2005]
[26] Via Technologies Inc. http://www.viavpsd.com/ [viewed Apr 2005]
[27] [27] Epia M10000 Review.

http://www.epiacenter.com/modules.php?name=Content&pa=showpage&pid=21

Armitage and Harrop 281

Appendix A: Limitations of jail host environments

A jail host supports all conventional, kernel-mediated TCP and UDP based
communication. It runs its own instances of the ssh daemon, has its own password
files, and has its own copy of the FreeBSD file system. The primary host has
multiple IP addresses - one for itself and one for each jail host.

User-space applications you can run on a regular FreeBSD machine will generally
run unchanged inside an equivalent jail host.

Restrictions are enforced by the primary host's kernel to ensure jail host processes
never see (and cannot access) other processes and files outside their constrained
context. Primary host processes have no such restrictions.

A jail host does not completely replicate the environment of a regular FreeBSD host.
The limitations primarily relate to the jail host's networking and kernel
functionality. In FreeBSD 4.x these include:

• Networking
• A jail host has a single network interface and a single IP address
• A jail host cannot get raw access to the network interface (e.g. for network

sniffing with tcpdump, building custom UDP frames for traceroute, sending
ICMP packets to other hosts for ping, etc....)

• Jail hosts are currently IPv4-only
• Kernel
• File systems cannot be mounted or unmounted from within the jail host
• The kernel, and kernel system variables, cannot be modified from within a jail

host
• Access to physical devices is substantially constrained

Some applications need fine tuning to handle the fact that localhost (traditionally
127.0.0.1) is silently mapped to the jail host's actual IP address. For example, the ssh
daemon within each jail host must be told not to use “localhost” when setting up
X11 forwarding back across inbound ssh connections (by adding the line
“X11UseLocalhost no” to /etc/ssh/sshd_config.)

Other resources that need to be re-configured in the primary and jail hosts include
the default set of ptys – virtual terminals that support ssh logins to each jail host.
The default FreeBSD configuration has /dev/ptyp0 through /dev/ptypv defined.
With many jail hosts, and multiple ssh logins per jail host, the system can quickly
run out of spare ptys for new logins. The solution is to run “./MAKEDEV pty1 pty2
pty3” in the /dev/ directories of the primary host and each jail host.

More details about the restrictions imposed by jails can be found in Kamp and
Watson's SANE2000 paper [5].

282 Australasian Journal of Educational Technology, 2005, 21(2)

Appendix B: Glossary

DNS Domain Name System - A system fundamental to the Internet by
which Internet domain names (eg. www.swin.edu.au) are mapped to
IP addresses.

FreeBSD A free, open source, Unix-like operating system.
Host A entity or node on a network.
HTTP Hyper Text Transfer Trotocol - The protocol by which hyper text

(web pages) are transferred across an IP network.
I/O ports Input/Output ports – The physical ports of a computer used to

interconnect with hardware devices.
IP Internet Protocol - The protocol standard on which the Internet is

built.
IP address - Internet Protocol Address - (often presented in the form
“136.186.1.35”).

Jail A FreeBSD concept that allows applications to be contained within a
constrained environment.

Kernel The core component of an operating system that mediates user space
applications access to hardware.

Linux A free, open source, Unix like operating system.
Motherboard The main circuit board of a computer.
NetBSD A free, open source, Unix like operating system.
Open source A software package where the programming source code is freely

available for inspection and modification.
OpenBSD A free, open source, Unix like operating system.
Primary host A machine that supports multiple virtual hosts upon it.
RULE Remote Unix Lab Environment - A networked server allowing

multiple users to login to their own complete FreeBSD virtual hosts.
SSH Secure Shell - The most common means of secure login to Unix like

operating systems.
User space The normal operating environment for applications, its use is

mediated by the kernel.
Virtual host A virtual FreeBSD host that runs on a primary host (in user space),

but looks for all purposes like a regular machine
Virtual
machine

A virtual computer being fully emulated at the hardware level on
another computer (and thus has more overheads than a virtual host).

Grenville Armitage and Warren Harrop
Centre for Advanced Internet Architectures
Swinburne University of Technology
PO Box 218, Hawthorn, Victoria 3122
Email: garmitage@swin.edu.au, wazz@bud.cc.swin.edu.au
Web: http://www.caia.swin.edu.au/

